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ABSTRACT 

The differences in the kinetic equations used and the values of the apparent activation 
energy and frequency factor for the thermogravimetric dehydration of 2-ethylpyridinium 
metatungstate monohydrate have been obtained. 

Five different methods for the treatment of increasing temperature data have been 
attempted, taking into account 18 analytical forms of the f( rr) or F(a) functions. One of 
these methods has been developed and checked for the first time in this work. The most 
probable mechanism is related to the F(a) expression, [ - ln(1 - a)]. The E and A values 
obtained were 127-160 kJ mall’ and 1018-4x 102t ss’ respectively. 

INTRODUCTION 

Thermogravimetric (TG) decomposition have been widely used for the 
determination of the water of crystallization and/or absorbed water and for 
the description of the decomposition process of poytungstates into WO, 
[l-4]. 

In our previous study of the synthesis, characterization and thermal 
behaviour of a-(C,H,NH-C,H,),H[H2W,20,,1. H,O [5], the dehydration 
reaction was found to occur between 340 and 373 K. The kinetic analysis in 
ref. 5 was carried out using two methods of analysis on one TG curve: that 
proposed by Satava [6] and Sharp’s method [7]. Two kinetic equations were 
then proposed but no definite conclusion could be drawn about which was 
the leading equation of the reaction. 

Throughout this work, we have analysed the dehydration reaction in more 
detail using data from several TG and differential thermogravimetric (DTG) 
curves obtained at different heating rates and three new methods of analysis 
(considering the heating rate as a variable). The methods used for the 
non-isothermal thermogravimetric analysis were those proposed by Ozawa 
[8,9] and Urbanovici and Segal [lO,ll] and a modification of Sharp’s (MS) 
method developed by us. This study has permitted us to choose the equation 
F(a) = - ln(1 - (Y) as the most probable mechanism for the dehydration 
reaction, as we describe below. 
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THE INTEGRAL METHODS 

One run 

In Satava’s method, from the integral kinetic equation 

F(a) = ia da/f(a) = A/pi’ e-E/RTdT= (AE/PR)p(x) 

where x = E/RT and p(x) = e-xx-1 - IX0 e-*x-’ dx, the 
equation takes the form 

In F(a) - In p(x) = ln(AE/PR) 

0) 

final operative 

(2) 

In p(x) is a linear function of l/T, to a first approximation, and therefore 
In F( CX) must also be a linear function of l/T. 

For the correct mechanism, In J’( CZ) vs. l/T should be a straight line, the 
slope of which (tan b) can be used to evaluate E by the following equation 

E= 
- 449 + tan b/2.303 kcal mol _ 1 

217 (3) 

The intercept of the plot gives In A. 

Several runs at different heating rates 

Ozawa’s method using Doyle’s approximation for log p(x) [12,13] 

log p(x) = -2.315 -0.4567x (4) 

proposes the following relationship 

log F(a) + log p = log AE/R - 2.315 - 0.4567E/RT (5) 

The method entails the repetition of the TG data at various values of j3 
and it uses temperature values for the same conversion at different heating 
rates. The activation energy can be evaluated from the slope of the straight 
line plot of log p vs. l/T for each (Y value. 

The next step is the determination of A and F(a). The theoretical curves 
of 1 - CY vs. log F(a) are determined for the 18 F(a) functions tested in this 
work [5] and the experimental plots of 1 - LY against log[( E/R/?)p( x)] are 
superimposed to fit one of the theoretical curves. 

The Urbanovici and Segal method for the evaluation of non-isothermal 
kinetic parameters uses integration over small temperature intervals. Several 
heating rates must be used in order to determine whether or not the 
activation energy changes with the degree of conversion. 

For two curves obtained at & and & the expression for the activation 
energy is 

E=R (6) 
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where At, and At, are the time differences corresponding to the interval 

a E [a,, ~1 and L = (T,, + T,,)/2. The resulting activation energy corre- 
sponds to the degree of conversion given by 

f_X+a, 
(y=I-- 

2 (7) 

This method is based on the assumption that F(a) does not change for 
various heating rates and degrees of conversion in the interval (Y E (a,, ak). 

THE DIFFERENTIAL METHODS 

One run 

Sharp’s treatment is very similar to that proposed by Dollimore and 
coworkers [14,15]. It starts with the rate equation 

dcu 

a’=== P 
A e-E’Rrf(a) 

The plot of In (Y’ - In f(a) against l/T must give a straight line, for 
correct f(a), the slope of which ( -E/R) gives the activation energy. 

Several runs at different heating rates 

(8) 

the 

In this work a new method is proposed which analyses data from several 
runs at different heating rates. 

Starting from the same expression 

In (Y’ - In f(a) = In A/j3 - E/RT (9) 

the influence of the temperature and the conversion on the kinetic parame- 
ters can be evaluated. Therefore the plots of In cy’ - In f(a) vs. In fi using (Y 
and CY’ values for each temperature in the different runs must be straight 
parallel lines of slope 1 for the correct function f (ar). The intercepts of the 
lines are equal to In A - E/RT. 

The A and E values can be obtained from the least-square fit of the 
intercept values against l/T. Although the use of the intercept as the 
dependent variable is statistically less precise, the value obtained can be 
used to indicate the influence of temperature on the values of the activation 
energy. 

The activation energy can be obtained from the plots of In (Y’ - In f ( (Y) + 
In p vs. l/T by using temperature values for the same conversion at the 
different heating rates. 

This technique has been applied to n = 1 and 3/2 functions in order to 
check the method and its adequacy for distinguishing between the two 
mathematical equations. 
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EXPERIMENTAL 

2-Ethylpyridinium metatungstate monohydrate was prepared for the first 
time in our laboratory. To an aqueous solution of Na,WO, (0.2 mol dme3, 
pH 5.12) the stoichiometric amount of 2-ethylpyridinium chloride was 
added, and the mixture was heated (80” C) and stirred for 2 h. The 
compound was isolated only after allowing the solution to stand for several 
days. The salt was identified as (BH),H[H,W,,O,] [5]. The experimental 
techniques, calibration and working conditions have been described in a 
previous work [5]. 

RESULTS AND DISCUSSION 

The thermogravimetric dehydration reaction 

(C,H,NH-C,H,),H[H,W,,O,,I . H@(s) 

+ (C,H,NH-C,H,),H[H,W,,O,] (s)+ H@(g) 

has been carried out at seven different heating rates: 0.5, 0.7, 1.0, 1.2, 1.5, 
1.7 and 2.0 o C min-‘. Figure 1 shows the curves obtained at 1.2”C rnin-‘. 
The (Y vs. T plots (see Fig. 2) are sigmoidal for the seven heating rates, with 
initial induction and acceleration regions followed by a decay period. 

Kinetic analysis of the seven curves was first performed using the Satava 
integral method. The results obtained appear in Table 1 for the six equally 
probable [ - In( 1 - (u)]” functions which present the best least-squares 
all cases. 

fit in 

25.8L I_---_ _ 
I j 0.006 

25.72 

25 66 

-0.0 12 
I I I 

330.0 3 LO.0 350.0 360 0 370.0 

Temperature (K) 

Fig. 1. TG and DTG curves of the dehydration reaction at 1.2O C min-‘. 
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333 343 353 

Fig. 2. (y--T plots for the different heating rates. 

363 T(K) 

Then the Sharp (S) method was used to analyse the data for the seven 
heating rates. The results are shown in Table 2. It should be noted that the 
ambiguity between the two functions related to n = 1 and 3/2 cannot be 
overcome by using more than one heating rate. 

TABLE 1 

Satava method. Kinetic parameters E (W mol-‘), A (s-l) and r for F(a) = [ -ln(l - a)]” 

n Heating rate /I ( o C min- ‘) 

0.5 0.1 1.0 1.2 1.5 1.7 2.0 

3/2 E 243 255 249 293 240 251 242 

A 9x1033 1035 8~10~~ 2 x 104’ 2x1033 8 x 1O34 3x1033 

r 0.990 0.989 0.980 0.942 0.981 0.979 0.991 

1 E 159 161 163 165 157 164 

A 102l 2x102’ 7x102’ 1022 6~10~’ 9x102’ 

r 0.990 0.989 0.980 0.942 0.981 0.979 

2/3 E 103 104 106 126 102 107 

A 3 x 10’2 5 x 1o12 10’3 10’6 3x10’2 2 x 10’3 

r 0.990 0.989 0.980 0.942 0.981 0.979 

l/2 E 75 78 77 92 74 78 

A lo* 7x10* 5 x 10s 9XlO’O 2x10s 8x10’ 
r 0.990 0.989 0.980 0.942 0.981 0.979 

159 

102’ 

0.991 

103 

4x 10’2 

0.991 

75 

2x108 

0.991 

41 

104 

0.991 

33 

90 

0.991 

l/3 E 48 50 49 58 47 

A 6~10~ 5x104 2x104 6~10~ 104 

r 0.990 0.989 0.980 0.942 0.981 

l/4 E 33 35 34 42 33 

A 30 102 80 lo3 70 

r 0.990 0.989 0.980 0.942 0.981 

49 

3x104 

0.979 

35 

10* 

0.979 
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TABLE 2 

Activation energy (kJ mol-‘), frequency factor (SF’) and correlation coefficient for the 

equations f(a) = (d[ -In(l- a)“]/d(r}-’ (Sharp method) 

n Heating rate p ( o C min-‘) 

0.5 0.7 1.0 1.2 1.5 1.7 2.0 

3/2 E 242 

A 9x1035 

r 0.976 

1 E 159 

A 2x1023 

r 0.975 

2/3 E 103 

A 6 x 1014 

r 0.890 

l/2 E 76 

A 3 x 1o’O 

r 0.810 

l/3 E 49 

A 106 

r 0.620 

l/4 E 35 

A 8~10~ 

r 0.450 

248 

1038 

0.980 

142 

4x 102’ 

0.987 

73 

3XlO’O 

0.923 

37 

8~10~ 

0.656 

3 

5x10-3 

0.198 

-15 

3 x 1o-4 

0.136 

220 237 

2x1032 4x 1034 

0.994 0.991 

136 140 

3 x 10’9 1020 

0.992 0.990 

80 75 

10” 2 x 10’0 

0.936 0.920 

52 43 

5x106 2x105 

0.820 0.680 

24 11 

2x102 3 

0.420 0.009 

10 -5 

10 8~10-~ 

0.100 0.164 

209 

2x103” 

0.996 

126 

7x10’7 

0.998 

71 

4x109 

0.956 

44 

2x105 

0.850 

16 

10 

0.360 

3 

10-l 

0.010 

227 235 

6x103* 6~10~~ 

0.994 0.985 

137 144 

3 x 10’9 3 x 1020 

0.991 0.987 

78 84 

3 x 1o’O 3x10” 

0.923 0.870 

48 54 

106 9x106 

0.770 0.696 

18 24 

30 2x102 

0.270 0.270 

3 10 

10-l 10-l 

0.001 0.005 

The results in Tables 1 and 2 for these two mathematical functions show 
that the activation energy does not depend on the heating rate in the range 
0.5-2.0’ C min-‘. 

The Ozawa method permits us to obtain the activation energy without 
having in mind any F(a) or f(a) functions. The plots log p vs. l/T show 

TABLE 3 

Ozawa method. Activation energies (kJ mol-‘) 

a E r Slope 

0.2 127 0.987 - 6992 

0.3 128 0.991 - 7052 

0.4 130 0.992 - 7147 

0.5 128 0.993 - 7063 

0.6 129 0.989 - 7075 

0.7 129 0.996 - 7078 

0.8 129 0.998 -7114 

0.9 129 0.997 - 7100 
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Fig. 3. The theoretical thermogravimetric curves for the kinetic equation, F( CI) = [ - ln(l - CI)]” 
(right) and the experimental curve (left). 

good linearity for the chosen values. The results are presented in Table 3. As 
can be seen these values agree with those obtained for F(a) = - ln(l - a) 
from the two rising temperature methods used before. 

Using 129 kJ mol-’ as the E value, the 1 - (Y vs. log[ E/PR p(x)] curves 
were plotted and superimposed to fit one of the theoretical curves 1 - (Y vs. 
log F(a) in Fig. 3. The best fit is for n = 1 and the A value obtained from 
the length of the lateral shift is 1.74 X 1Ol9 s-l. 

The method proposed by Urbanovici and Segal was utilized by consider- 
ing data from curves obtained at 0.5 and 2.0” C mm-‘. The results are 
shown in Table 4. As can be seen the E values are very close to those 
obtained using Ozawa’s method. 

Finally, the modified Sharp’s (MS) technique was applied to n = 1 and 
3/2 functions in order to check the method and its adequacy for distinguish- 
ing between the two mathematical equations. Figure 4 shows the In (Y’ - 
In f(a) vs. In j3 plots for different temperatures for the function F(a) with 
n = 1. The frequency factors in all cases were 0.99 and the slopes of the 
straight lines were between 0.935 and 1.056. 

TABLE 4 

Urbanovici method. Activation energies (kJ mol-‘) 

a E 

0.25 130 

0.35 134 
0.45 126 
0.55 130 
0.65 133 
0.75 135 
0.85 132 
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Fig. 4. In (Y’ -In f( (u) vs. In /I for the function f(a) = {d[ - In(l - a)]/da} -I: x = 343.5 K. 
0 = 344.5 K; A = 345.5 K; + = 346.5 K; o = 347.5 K; 0 = 348.5 K; w = 349 5. 3 = 350.; 
K. 

. 1 

For f(a) = {d[ - ln(l - u)]3’2/da} -’ the correlation coefficients were 
between 0.954 and 0.978 and the slopes were between 1.386 and 1.630. 

The E values obtained from the least-square fits of the intercept values 
(Fig. 4) vs. l/T and of the In LY’ - In f(a) + In /3 vs. l/T were 127 kJ 
mol-’ (r = 0.991) and 129 kJ mol-’ (r = 0.990) respectively. 

TABLE 5 

Activation energy from the different methods 

E (W mol-‘) 

Satava Sharp Ozawa Urbanovici MS 

160 140 129 132 127-129 
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Table 5 shows the E values obtained from the different methods for the 
expression F( CI) = - ln(1 - a). 

CONCLUSIONS 

The Satava and Sharp methods are not selective enough to determine the 
most probable mathematical expression for the CI functions, even when 
applied to several TG and DTG curves obtained at different heating rates. 
On the other hand, these two methods show that the E values and the (Y 
functions seem to be independent of the p values. 

The Ozawa method and the modification made to the Sharp method 
permitted us to choose the most probable mathematical obedience and the 
values obtained for the activation energy were very similar. 

The Urbanovici and Segal method shows that the activation energy is 
independent of the (Y values. The E values were very similar to those of the 
above methods, but somewhat different to those obtained using only one TG 
or DTG curve. 
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