REACTIONS OF SINGLE Cr(III)-P(V)Mo(VI) AND DOUBLE Cr(VI)-P(V)Mo(VI) PHASE SYSTEMS IN MOLTEN KNO,

M. HASSANEIN

Department of Inorganic Chemistry, National Research Centre, Dokki Cairo (Egypt) (Received 22 December 1987)

ABSTRACT

Dilute solutions of single-phase $(K_6Cr_2(P_2O_7))$, $Na_2KCr_2(PO_4)$, $K_2Cr_2Mo_2O_{13}$ and double-phase $(K_2Cr_2O_7-K_4P_2O_7, K_2Cr_2O_7-Na_5P_3O_{10}, K_2CrO_4-M_2O_3, K_2Cr_2O_7-M_2O_3)$ solutes were studied cryoscopically in molten $KNO₃$ solvent at 350°C. The depression in the freezing point ΔT of the solvent was measured using the DTA method. The calculated number of foreign ions ν suggested the presence of $(CrO₄)²⁻$ groups together with the isopolyions $(P_3O_{10})^5$ or $(Mo_3O_{10})^2$ in the corresponding single-phase solute-solvent melts. However, the double-phase solutes, $Cr(VI)-P(V)$ and $Cr(VI)-Mo(VI)$, seemed to react differently in molten KNO₃, giving rise to the foreign species $(CrO₄)²$, $(PO₄)³$, $(P₃O₁₀)⁵$ and the heteropolyion $(CrMoO₇)²$, respectively. The formation of such simple, isopolyions and heteropolyions is discussed in view of previous results obtained using different experimental methods.

INTRODUCTION

In very dilute solutions of a solute in a molten solvent, a depression in the freezing point ΔT of the solvent may be observed. In such a case, a number of foreign ions ν are formed in the solvent-solute melt, which differ from the dissociation products of the melted pure solvent. The relation between ΔT ($^{\circ}$ C) and v is given by the simplified Raoult-van't Hoff law of freezing point depression, $\Delta T = T_1 - T = \nu x_2 [RT_1^2 / \Delta H_1] = \nu x_2 K_0$, which is obeyed in very dilute solutions. T_1 and T are the crystallization temperatures in K of the pure solvent and the solvent-solute mixture, respectively; $x₂$, is the mole fraction of the solute and K_0 is the molar depression of freezing point or cryoscopic constant of the solvent obtained from its heat of fusion and freezing point. A K_0 value of 318 was obtained for KNO_3 [1] from $\Delta H_1 = 2300$ cal mol⁻¹, $T_1 = 607$ K and the ideal gas constant $R = 1.986$ cal K^{-1} mol⁻

EXPERIMENTAL

The solutes $K_2Cr_2O_7$, K_2Cr_4 , MoO₃ (P.A.) and $K_4P_2O_7$ (pure), together with the solvent KNO_3 (purest) were obtained from Merck. $Na_5P_3O_{10}$ was kindly provided by Prof. E. Thilo (Berlin). Single solute phases, namely $K_6Cr_2(P_3O_7)$, Na₂KCr₂(PO₄), and $K_2Cr_2Mo_3O_{13}$, were prepared and identified as reported previously [2-4]. Depression of the freezing point ΔT $(^{\circ}C)$ of the solvent KNO₃ was measured using the DTA technique as described earlier [1,5].

RESULTS AND DISCUSSION

Generally, in view of the dissociation equilibria of molten $KNO₃$ [6,7], $NO_1^- \rightleftharpoons NO_2^+ + O^{2-}$ and $NO_3^- + NO_2^+ \rightarrow N_2O_5 \rightarrow 2NO_2 + 0.5O_2$, the nitrate can be considered as an oxide ion donor. The shift of the basic equilibria to the right in the presence of solutes behaving as Lux-Flood acids (oxide ion acceptors) has been generally accepted and confirmed by thermogravimetric techniques [8], acid-base reactions [9] and cryoscopic methods [10].

The numbers of foreign ions ν produced by the single-phase solutes $K_6Cr_2(P_2O_7)$, and $Na_2KCr_2(PO_4)$, were found to be 4 and 5, respectively (Fig. 1). Accordingly, the following general reactions can be assumed

$$
8KNO_3 + K_6Cr_2(P_2O_7)_3 \rightarrow 14K^+ + 2(CrO_4)^{2-} + 2(P_3O_{10})^{5-} + 8NO_2 + 0.5O_2
$$
\n
$$
6KNO_3 + Na_2KCr_2(PO_4)_3 \rightarrow 7K^+ + 2Na^+ + 2(CrO_4)^{2-} + (P_3O_{10})^{5-} + 6NO_2
$$
\n(2)

It is evident that the nature of the foreign particles formed in the melt suggests the oxidation of $Cr(III)$ to $Cr(VI)$ and formation of the stable isopolyion $(P_3O_{10})^{5-}$ during reactions between the nitrate (oxide ion donor) and the constituents Cr_2O_3 and $x(P_3O_9)^3$ of the solute (oxide ion acceptor). However, an alternative complex reaction in the melt between $(P_3O_9)^{3-}$ and $(NO₃)$ ⁻ ions as assumed previously [9] will not change the v value as can be seen from the reactions

$$
(P_3O_9)^{3-} + (NO_3)^{-} \rightarrow [(P_3O_9) \cdot NO_3]^{4-}
$$

$$
[(P_3O_9) \cdot NO_3]^{4-} + (NO_3)^{-} \rightarrow (P_3O_{10})^{5-} + N_2O_5(N_2O_5 \rightarrow 2NO_2 + 0.5O_2)
$$

The species proposed $((CrO₄)²⁻$ and $(P₃O₁₀)⁵⁻)$ as reaction products of the single-phase solutes $Cr(III)-P(V)$ in the nitrate melt are in good agreement with previous results of melt spectra (presence of CrO_4^{2-}) and IR spectra of the quenched melt [11] (identification of $CrO₄²⁻$ and $P₃O₁₀⁵⁻$) and with the stability of the isopolyion $(P_3O_{10})^{5-}$ as confirmed cryoscopically [12], electrochemically [13] and by acid-base reactions [9].

Fig. 1. Depression of the freezing point of molten KNO_3 by: $K_6Cr_2(P_2O_7)_3$ (o), $Na_2KCr_2(PO_4)_3(2)$, $K_2Cr_2O_7-K_4P_2O_7$ (\bullet), $K_2Cr_2O_7-Na_5P_3O_{10}$ (\bullet), $K_2Cr_2Mo_3O_{13}$ (+), K_2 CrO₄-MoO₃ (\times) and K_2 Cr₂O₇-MoO₃ (\triangle).

The double-phase solutes $K_2Cr_2O_7-K_4P_2O_7$ and $K_2Cr_2O_7-Na_5P_3O_{10}$ induced a depression in the freezing point of the $KNO₃$ melt corresponding to ν values of 4 and 8, respectively (Fig. 1). Thus, their reactions in the nitrate melt can be assumed to be

$$
4KNO_3 + (K_2Cr_2O_7 - K_4P_2O_7) \rightarrow 10K^+ + 2(CrO_4)^{2-} + 2(PO_4)^{3-} + 4NO_2 + 0.5O_2
$$

$$
2KNO_3 + (K_2Cr_2O_7 - Na_5P_3O_{10}) \rightarrow 4K^+ + 5Na^+ + 2(CrO_4)^{2-} + (P_3O_{10})^{5-} + 2NO_2 + 0.5O_2
$$

It seems, therefore, that the transformation of the relatively acidic groups $(Cr_2O_7)^{2-}$ and $(P_2O_7)^{4-}$ to the more basic groups $2(CrO_4)^{2-}$ and $2(PO_4)^{3-}$ and the dissociation of $Na_5P_3O_{10}$ with the formation of the stable isopolyion $(P_3O_{10})^{5-}$ are the dominant reactions occurring in the nitrate melt. This conclusion is in agreement with previous results of the separate phases $K_2Cr_2O_7$, $K_4P_2O_7$ and $Na_5P_3O_{10}$ in molten nitrate [10,12], thus indicating that no apparent prior reactions of $K_2Cr_2O_7$ with either $K_4P_2O_7$ or $Na_5P_3O_{10}$ occur in the melt. If such prior reactions did occur in the melt to give water-insoluble $K_6Cr_2(P_2O_7)$, or $Na_2KCr_2(PO_4)$, together with water-soluble phases (as known in solid state reactions) one would expect different values of ν than those found.

The single-phase solute $K_2Cr_2Mo_3O_{13}$ gave a v value of 3 (Fig. 1), according to which a proposed general reaction can be given as $4KNO_3 +$ $K_2Cr_2Mo_3O_{13} \rightarrow 6K^+ + 2(CrO_4)^{2-} + (Mo_3O_{10})^{2-} + 2NO_2 + 2NO + 0.5O_2.$ The mechanism of the reaction between each constituent of the dissociation products $[Cr_2O_3, (Mo_3O_9)^{2-}]$ of the solute and the KNO₃ melt, and hence the nature of the foreign species formed, seem to be similar to those suggested previously for the solute $Cr_1Mo_3O_1$, [14]. Moreover, the presence of $(CrO₄)²⁻$ groups in the present melt mixture was confirmed by measuring the absorption spectrum of the melt (absorption maximum of $(CrO_A)²⁻$ at 26531 cm⁻¹). The IR spectrum of the quenched melt also confirmed the formation of $CrO₄²⁻$ groups together with the isopolyion $(M_{O₁₀})²⁻$ [11].

The numbers of foreign ions ν obtained in the double-phase solute systems $K_2C_1C_4-M_0C_3$ and $K_2Cr_2O_7-M_0C_3$ were found to be 1 and ≈ 2 , respectively (Fig. 1). It is obvious that these values of ν (1 and \approx 2) are lower than the summation of the individual ν values produced separately by each phase within the corresponding double-phase solute. This observation might indicate that some kind of reaction occurs between the two phases of the solute in the nitrate melt. By considering the behaviour of MoO_3 and $K_2Cr_2O_7$ separately in the KNO_2 melt [10], and the solid state reaction between K_2CrO_4 and MoO₃ (in equimolar ratio) [4], it may be possible to explain the results achieved. It was reported previously [10] that $MoO₃$ showed little tendency to dissolve in the KNO_3 melt at 350 °C. However, its dissolution and reaction with $KNO₃$ increased with an increase in the temperature of the nitrate melt $(450^{\circ}C)$. In contrast, the reaction of the solute $K_2Cr_2O_7$ in the KNO₃ melt at 350°C was observed to be rapid (in terms of the period of time required to observe a depression in the freezing point of the solvent) with the formation of the more basic $(CrO₄)²⁻$ groups. Moreover, the mixed crystal $2(K_2CrMoO₇)$ was obtained and identified as a result of a solid state reaction between $K_2CrO₄$ and $MoO₃$ as described earlier [4]. As seen from the previous observations and results concerning the velocity of the reactions of MoO₃ and $K_2Cr_2O_7$ in the KNO₃ melt at 350 °C and the tendency of K_2 CrO₄ to react with MoO₃ (equimolar ratio) in the solid state to give a defined phase (the above-mentioned mixed crystal), one can propose the following general reactions for the two double-phase solutes under investigation

$$
KNO_3 + 2(K_2CrO_4 - MoO_3) \rightarrow 5K^+ + 2(CrMoO_7)^{2-} + NO_3^-
$$
 (3)

Accordingly, it seems obvious that a reaction occurs first between $K_2CrO₄$ and MOO, in the nitrate melt presumably to give the mixed crystal $2(K, CrMoO₇)$, followed by its simple dissociation to produce the stable foreign heteropolyion $(CrMoO₇)²$.

$$
4KNO_3 + 2(K_2Cr_2O_7 - MoO_3) \rightarrow 8K^+ + 2(CrMoO_7)^{2-} + 2CrO_4^{2-} + 4NO_2 + O_2
$$
\n(4)

Again, it is clear that $K_2Cr_2O_7$ reacts first with KNO_3 to give the more basic $2(CrO₄)²⁻$ groups which react simultaneously with MoO₃ in a similar way as in the $K_2CrO_4-MoO_3$ double-phase solute, leading to the same stable heteropolyion (CrMoO₇)²⁻. Other previous reactions between K₂Cr₂O₇ and MoO₃ in the nitrate melt can be excluded, since the ν value found for this system is much less than that expected for any such reaction.

REFERENCES

- 1 G. Nolte and E. Kordes, Z. Anorg. Allg. Chem., 371 (1969) 149.
- 2 M. Hassanein, Rev. Chim. Miner., 19 (1982) 116.
- 3 M. Hassanein, Thermochim. Acta, 90 (1985) 251.
- 4 M. Hassanein, Thermochim. Acta, 47 (1981) 201.
- 5 M. Hassanein and E. Kordes, Z. Anorg. Allg. Chem., 381 (1971) 241.
- 6 R.F. Duke and M.L. Iverson, J. Am. Chem. Soc., 80 (1958) 5061.
- 7 R.F. Duke and S. Yamamoto, J. Am. Chem. Soc., 81 (1959) 6378.
- 8 H. Frouzanfar and D.H. Kerridge, Thermochim. Acta, 25 (1979) 11.
- 9 J.L. Copeland and L. Gutierrez, J. Phys. Chem., 77 (1973) 20.
- 10 M. Hassanein and E. Kordes, Z. Anorg, Allg. Chem., 387 (1972) 1.
- 11 M. Hassanein, Egypt. J. Chem., 26 (1983) 161.
- 12 M. Hassanein, and N.S. Youssef, Indian J. Chem., 20 (1981) 501.
- 13 A.M. Shams ElDin and A.A. El-Hosary, Electrochim. Acta, 13 (1968) 135.
- 14 M. Hassanein and N.S. Youssef, Thermochim. Acta, 56 (1982) 325.