Note

DIRECT DETERMINATION OF STANDARD ENTHALPIES AND GIBBS ENERGIES OF FORMATION AND ABSOLUTE ENTROPIES OF HYDRATED CALCIUM SULPHOALUMINATES AND CARBOALUMINATES

VLADIMÍR ŠATAVA

Institute of Chemical Technology, Prague 6, Suchbatarova 5 (Czechoslovakia) (Received 8 December 1987)

The differential hydrothermal analysis (DHA) method [1–3] was used to determine the reaction enthalpies for the following reactions (where C = CaO, $S = SiO_2$, $A = Al_2O_3$, $H = H_2O$, $\overline{C} = CO_2$ and $\overline{S} = SO_3$) $C_6A\overline{S}_3H_{32}(s) = C_4A\overline{S}_{12}(s) + 2C\overline{S}H_{0.5}(s) + 10H(1)$ $\Delta_{r_1}H = (188.41 \pm 4.19) \text{ kJ mol}^{-1}$ (1) $C_4A\overline{S}H_{12}(s) = C_3AH_6(s) + C\overline{S}(s) + 6H(1)$ $\Delta_{r_2}H = (50.66 \pm 4.19) \text{ kJ mol}^{-1}$ (2) $C_4A\overline{C}H_{11}(s) = C_3AH_6(s) + C\overline{C}(s) + 5H(1)$ $\Delta_{r_2}H = (52.40 \pm 2.1) \text{ kJ mol}^{-1}$ (3)

On the assumption of a zero value of ΔC_p for the reactions, the standard enthalpies of formation were calculated from these values using the standard enthalpies of formation of the substances involved [4]

$$\Delta_{f} H^{\oplus} \left(C_{4} A \overline{S}_{3} H_{32} \right) = -17527.7 \text{ kJ mol}^{-1}$$

$$\Delta_{f} H^{\oplus} \left(C_{4} A \overline{S} H_{12} \right) = -8752.1 \text{ kJ mol}^{-1}$$

$$\Delta_{f} H^{\oplus} \left(C_{4} A \overline{C} H_{11} \right) = -8241.0 \text{ kJ mol}^{-1}$$

The equilibrium temperatures of the reactions were determined by extrapolating the dependence of the onset of the corresponding DHA peak on the heating rate ϕ towards $\phi \rightarrow 0$: $T_{r_1} = (384 \pm 1)$ K, $T_{r_2} = (450 \pm 2)$ K and $T_{r_3} = (403 \pm 2)$ K.

From the established values of $\Delta_r H$ and the corresponding equilibrium temperatures it follows for reaction entropies

$$\Delta_{\rm r}S = \frac{\Delta_{\rm r}H}{T_{\rm r}} \tag{4}$$

On the assumption that $\Delta C_p = 0$, the values of the standard absolute entropies were calculated from these values using the standard entropies of the substances involved

$$S^{\diamond} (C_4 A \overline{S}_3 H_{32}) = 1916.73 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$

$$S^{\diamond} (C_4 A \overline{S} H_{12}) = 816.06 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$

$$S^{\diamond} (C_4 A \overline{C} H_{11}) = 717.52 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$

From the values of $\Delta_r H$ and $\Delta_r S$ it follows $\Delta_r G = \Delta_r H - T \Delta_r S$

The standard Gibbs energies of formation were then calculated using the values of $\Delta_f G^{\circ}$ [4]

(5)

$$\Delta_{f}G^{\oplus}(C_{6}A\bar{S}_{3}H_{32}) = -15\ 202.0\ kJ\ mol^{-1}$$

$$\Delta_{f}G^{\oplus}(C_{4}A\bar{S}H_{12}) = -7779.86\ kJ\ mol^{-1}$$

$$\Delta_{f}G^{\oplus}(C_{4}A\bar{C}H_{11}) = -7348.55\ kJ\ mol^{-1}$$

The solubility products K_a correspond to the equilibria of the reactions Ca₆[Al(OH)₆]₂ · (SO₄)₃ · 26H₂O

$$\Rightarrow 6Ca^{2+} + 2Al(OH)_{4}^{-} + 3SO_{4}^{2-} + 4OH^{-} + 26H_{2}O(l)$$
(6)

$$\operatorname{Ca}_{4}[\operatorname{Al}(\operatorname{OH})_{6}]_{2} \cdot (\operatorname{SO}_{4}) \cdot \operatorname{6H}_{2}\operatorname{O}$$

$$\xrightarrow{} \operatorname{ACe}^{2^{+}}_{2^{+}} + 2\operatorname{Al}(\operatorname{OH})^{-}_{2^{+}} + \operatorname{SO}^{2^{-}}_{2^{-}} + \operatorname{AOH}^{-}_{2^{+}} + \operatorname{6H}_{2^{+}}\operatorname{O}(1)$$

$$(7)$$

$$\approx 4\operatorname{Ca}^{2+} + 2\operatorname{Al}(\operatorname{OH})_4 + \operatorname{SO}_4^{2-} + 4\operatorname{OH}^2 + 6\operatorname{H}_2\operatorname{O}(1)$$

$$\operatorname{Ca}_4[\operatorname{Al}(\operatorname{OH})_6]_2 \cdot (\operatorname{CO}_3) \cdot 5\operatorname{H}_2\operatorname{O}$$

$$(7)$$

$$\Rightarrow 4Ca^{2+} + Al(OH)_{4}^{-} + CO_{3}^{2-} + 4OH^{-} + 5H_{2}O(1)$$
(8)

Then

$$K_{a} = \prod_{i} a_{i}^{\nu_{i}} \tag{9}$$

when a_i is the activity of the solvated species and the activity $a_{H_2O} \approx 1$. The K_a value can be calculated using the equation

$$\Delta_{\rm r}G^{\,\oplus} = -RT\,\ln\,K_{\rm a}\tag{10}$$

in which the values of $\Delta_{f}G^{\oplus}$ evaluated above were used. Then, $\Delta_{r_{\mu}}G^{\oplus} =$

TABLE 1

	CaO	CaSO ₄	Al ₂ O ₃	CaCO ₃
$\overline{C_6 A \overline{S}_3 H_{32}}$	1.223	1.303	0.358	
$C_4 A \overline{S} H_{12}$	2.977	0.330	0.920	_
$C_4 A \overline{C} H_{11}$	1.403		-	0.702

Concentrations (mmol dm⁻¹)

235.8 kJ and $K_{a_6} = 4.72 \times 10^{-42}$; $\Delta_{r_7} G^{\oplus} = 157.24$ kJ and $K_{a_7} = 2.76 \times 10^{-28}$; $\Delta_{r_8} G^{\oplus} = 179.35$ kJ and $K_{a_8} = 3.71 \times 10^{-32}$.

Zhang et al. [5] measured experimentally the equilibrium concentrations corresponding to reactions (6)-(8) (see Table 1).

The concentrations of ionic species were calculated using the stoichiometry of reactions (6), (7) and (8). For $C_6 A \overline{S}_3 H_{32}$

$$[Ca2+] = [CaO] + [CaSO4][Al(OH)4-] = 2[Al2O3][SO42-] = [CaSO4][OH-] = 2[CaO] (11)$$

Then, $K_{s_6}(C_6A\overline{S}_3H_{32}) = [Ca^{2+}]^6 [Al(OH)_4^-]^2 [SO_4^{2-}]^3 [OH^-]^4 = 1.1 \times 10^{-40}$. The values $K_{s_7}(G_4A\overline{S}H_{12}) = 1.7 \times 10^{-28}$ and $K_{s_8}(C_4A\overline{C}H_{11}) = 1.4 \times 10^{-30}$ were obtained in a similar way. The K_a value can be calculated using the equation

$$K_{a} = K_{s}K_{\gamma} \tag{12}$$

where

$$K_{\gamma} = \prod_{i} \gamma_{i}^{\nu_{i}} \tag{13}$$

and γ_i are the activity coefficients.

The Davies equation [6] which simplifies the calculation of the activity coefficients was used

$$\log \gamma_i = -0.507 |z_i^2| \frac{\sqrt{I}}{1 + \sqrt{I}} - 0.3I$$
(14)

where ionic strength I is defined as

$$I = 0.5 \sum_{i} m_i z_i^2 \tag{15}$$

and m_i is the molality of the *i*th disolved ionic species and z_i is the charge of this species. The calculated values of K_a are then

$$K_{a_{6}}(\text{calc}) = \gamma_{\text{Ca}^{2+}}^{6} \gamma_{\text{Al}(\text{OH}_{4})}^{2} \gamma_{\text{SO}_{4}}^{3} \gamma_{\text{OH}}^{4} K_{s_{6}} = 4.3 \times 10^{-42}$$

$$K_{a_{7}}(\text{calc}) = \gamma_{\text{Ca}^{2+}}^{4} \gamma_{\text{Al}(\text{OH})_{4}}^{2} \gamma_{\text{SO}_{4}}^{2} \gamma_{\text{OH}}^{4} K_{s_{7}} = 1.4 \times 10^{-29}$$

$$K_{a_{8}}(\text{calc}) = \gamma_{\text{Ca}^{2+}}^{4} \gamma_{\text{Al}(\text{OH})_{4}}^{2} \gamma_{\text{CO}_{3}}^{2} \gamma_{\text{OH}}^{4} K_{s_{8}} = 1.98 \times 10^{-31}$$

The values of K_a calculated using the values of the standard Gibbs energies of formation of $C_6 A\bar{S}_3 H_{32}$, $C_4 A\bar{S} H_{12}$ and $C_4 A\bar{C} H_{11}$ are in satisfac-

Substance	$\Delta_{f}G^{\oplus}(kJ \text{ mol}^{-1})$	K _s	K _a	
			From $\Delta_{f}G^{\oplus}$	From K _s
$\overline{C_6 A \overline{S}_3 H_{32}}$	-15202.0	1.1×10^{-40}	4.72×10^{-42}	4.3×10^{-42}
$C_4 A \overline{S} H_{12}$	- 7779.8	1.7×10^{-28}	2.76×10^{-28}	1.4×10^{-29}
$C_4 A \overline{C} H_{11}$	- 7348.5	1.4×10^{-30}	3.71×10^{-32}	2.0×10^{-31}

TABLE 2

tory agreement with the values calculated from the experimental measurement of equilibrium concentrations (see Table 2).

REFERENCES

- 1 V. Šatava and O. Vepřek, J. Am. Ceram. Soc., 58 (1973) 337.
- 2 V. Šatava, Silikaty, 30 (1986) 1.
- 3 V. Šatava, Silikaty, 31 (1987) 117.
- 4 V.I. Babushkin, G.M. Matveev and O.P. Mčedlov-Petrossyan, Thermodynamics of Silicates, Springer-Verlag, Berlin, 1985.
- 5 F. Zhang, Z. Zhou and Z. Lou, Solubility Products and Stability of Ettringite, 7th International Congress on Chemistry of Cements, Paris, 1980.
- 6 C.V. Davies, Ion Association, Butterworths, London, 1962.