Thermochimica *Acta*, 133 (1988) 215-219 Elsevier Science Publishers B.V., Amsterdam

THERMAL ANALYSIS AND KINETICS OF OXIDATION OF "Cr₃S₄" AND "Cr₃S₃"

Y. SHIGEGAKI, S.K. BASU AND M. TANIGUCHI Department of Chemical Engineering, Tokyo Institute of Technology, Tokyo (Japan)

ABSTRACT

The thermal analysis and kinetics of oxidation of monoclinic "Cr₃S₄", trigonal "Cr₂S₃" and rhombohedral "Cr₂S₃" phases were studied by using both thermogravimetry and high temperature X-ray diffraction technique. The oxidation reactions of Cr_yS (x=0.677 \sim 0.751) were as follows:

low temperature range (450^o~ 500^oC);
\n
$$
Cr_{x}S + \frac{3y}{4}O_{2} = Cr_{x-y}S + \frac{y}{2}Cr_{2}S_{3}
$$
\n(1)

high temperature range (500 $\degree \sim$ 645 \degree C);

$$
Cr_{x}S + \frac{3x+4}{4}O_{2} = \frac{x}{2}Cr_{2}O_{3} + SO_{2}
$$
 (2)

Both the reactions were dependent on temperature, partial pressure-of oxygen and phases of chromium sulfides. Reaction (1) was the-preferred oxidation of chromium metal in the sulfides and the oxidation reaction obeyed the parabolic law. Reaction (2) $(0.01 \le \alpha$ \leqslant 0.65) was controlled by 1-(1-a)^{1/3}= kt. The phase transition of Cr x-y S during low temperature oxidation was also discussed.

INTRODUCTION

Chromium sulfides $(Cr_3S_4, Cr_2S_3, etc.)$ are formed as a result of corrosion of Cr-base commercial alloys. There are reports on the sulfidation and oxidation of metallic chromium, but very little has been done on the thermal oxidation of chromium sulfides. When heating Cr_7S_8 coated Cr and bulk Cr_7S_8 in O₂ (100 torr) at 1050°C, Tedmon et al. [1] observed the formation of Cr_2O_3 and higher sulfides (undefined) without the evolution of SO_2 . The kinetics in the initial stage of oxidation were parabolic, but in the later stage the rate decreased sharply. Tudo [2] reported that chromium sulfides started to gain weight from around 100°C when heated in 0_2 . Formation of $\rm Cr_2(SO_4)$ and $\rm Cr_2O_3$ was observed around 600°C but no SO₂ was detected below 580°C. Tudo also observed phase transition during this oxidation process. However, the phases of higher sulfides formed in

Thermal An&is *Proc. 9th ICTA Congress, Jerusalem, Israel,* 21-25 *Aug.* 1988 0040-6031/88/\$03.50 © 1988 Elsevier Science Publishers B.V.

the course of oxidation were not identified. There is also discrepancy regarding the formation of $Cr_2(SO_4)$ ₃.

In these circumstances, the purpose of this paper was to investigate the kinetics and oxidation processes of three principal phases, e.g. monoclinic cr_3S_4 (m-" cr_3S_4 "), trigonal cr_2S_3 (t-" cr_2S_3 ") and rhombohedral Cr_2S_3 (r-" Cr_2S_3 ") in the Cr-S system under different experimental conditions.

EXPERIMENTAL

Measurement method

The TG-DTA measurements were performed with a Rapid-Heating Rigaku Thermoflex TG-DTA unit. Experimental procedures including the control of $P0₂$, the characterization of samples and oxidation products, the determination of rate equations, etc. have been reported elsewhere [3,41.

Sample preparation

Reagent grade Cr_2O_3 powder (Yoneyama Chem. Ind. Ltd., over 99% pure) was placed in a mullit boat and heated in a flow of H_2S gas (1 atm) at 95O*C for 48h. Complete sulfidation of the sample was ascertained, and the composition of the heated sample was determined to be $crs_{1.480}$. This sample was heated [5,6] at different Ps₂ (10⁻⁸ \sim 1 atm) at 800°C for 5 \sim 16h to prepare m-"Cr₃S₄" (Cr_{0,751}S), $t^{-n}Cr_2S_3$ " (Cr_{0.702}S) and $r^{-n}Cr_2S_3$ " (Cr_{0.677}S). The phases were identified from the X-ray powder diffraction pattern, (CuK_{α}) , and the compositions were determined by oxidizing the samples in air at 900°C for 24h to Cr_2O_3 .

RESULTS- AND DISCUSSION

Oxidation process

The TG-DTA curves for the oxidation of nonstoiohiometric m -"Cr₃S₄", t-"Cr₂S₃" and r-"Cr₂S₃" at a Po₂ of 0.110 atm,at 10°C/m are shown in Fig. 1. All the TG traces recorded a slight gain in weight from around lOO*C (not indicated in the figure) and a sharp loss from 630°, 635° and 725°C for the rhombohedral, trigonal and monoclinic phases, respectively. **A** sharp exothermic peak corresponding to the weight loss appeared in the DTA curves. An example of the effect of Po₂ on the TG-DTA profile is shown in Fig.2. The final

216

Fig.1 TG-DTA curves at lO'C/m (Sample: lOmg, 250+270mesh) -

oxidation product for all the samples was Cr_2O_3 . The presence of SO₂ could not be detected in the outlet gas during the weight gain, and in all cases only Cr_2O_3 was found to be formed from 400°C.

Fig.2 TG-DTA curves of t -"C r_2s_3 " at $10°C/m$ (Sample: $10mg, 250 - 270$ mesh; Po₂: a) 0.006, b) 0.044, c) 0.110 d) 0.209 and e) 0.412 atm)

The low temperature weight gain (ca. 4% without SO_2) and high. temperature weight loss (ca. 20% with $SO₂$) became clear when the samples were heated isothermally. A typical example is shown in Fig.3 which indicates that the limiting temperature for these two reactions is 500°C when heating t-" $\mathrm{Cr}_2\mathrm{O}_3$ " in air. This temperature increased with the decrease of Po₂, and it is almost the same for the rhombohedral phase. However, for m -"Cr₃S₄", this temperature could not be distinguished since the sample continued to gain weight even at higher temperature. The samples were examined after heating isothermally at different temperatures, but unlike Tudo [21, the formation of $Cr_2(SO_4)$ ₃ could not be detected. From this results, it is concluded that the oxidation reactions of chromium sulfides $(Cr\sqrt{s})$ are

low temperature range:
$$
Cr_xS + \frac{3y}{4}O_2 \xrightarrow{500°C} Cr_{x-y}S + \frac{y}{2}Cr_2O_3
$$
 (1)

high temperature range: Cr_xS +
$$
\frac{3x+4}{4}
$$
O₂ $\frac{>500°C}{2}$ $\frac{x}{2}$ Cr₂O₃ + SO₂ (2)

Phase transition during low temperature oxidation

The transition of the monoclinic "Cr₃S₄" to trigonal Cr₂S₃ phase, and of the trigonal " Cr_2S_3 " to rhombohedral Cr_2S_3 phase as generalize in Eq. (1) were observed from the high temperature X-ray

Fig.3 Isothermal TG curves for $t-"Cr_2S_3"$ (Sample: 2.5mg, 250~ 270mesh).

Fig.4 o vs. t plots for low temperature oxidation (Sample: 2.5 mg, $250 \sim 270$ mesh).

diffraction pattern. The phase transition occurred by the relative increase in sulfur content due to the preferred oxidation of Cr in the sulfides.

Kinetics of low temperature oxidation (Eq. 1)

Typical α vs. t plots for the oxidation of Cr_vS according to Eq. (1) are shown in Fig.4. For r -"Cr₂S₃", the maximum weight gain was observed at 400°C. This can be explained by the fact that $r-Cr_2S_3$ has the smallest nonstoichiometry of the three phases [51 and less amount of Cr is available for oxidation, i.e. with the dissolution of a small amount of sulfur in the matrix, the highest limit of the rhombohedral phase is attained. It is clear from the α^2 vs. t plot shown in Fig.5 that the reaction initially obeys parabolic law, and after about 3h, the rate becomes slower than parabolic. The apparent activation energies were $140 \sim 145$ kJ/mol and were independent of the sulfide phases. These values coincide with that of the oxidation of metallic chromium (150 \pm 13 kJ/mol) at temperatures between 300 600°C reported by Young et al. [7]. This finding suggests that the rate determining step of Eq.,(l) is the diffusion of Cr through the cr_2O_3 layer since the diffusion of Cr through the sulfide is quite high (51.

Kinetics of high temperature oxidation (Eq. 2)

Kinetics of oxidation of m^{-n} Cr₃S_A^{n} could not be studied since both reactions (1) and (2) occur simultaneously at high temperature. It is seen from the $F(\alpha)$ ws. t plots in Fig.6 that reaction (2) was controlled $(0.01 \le \alpha \le 0.65)$ by three-dimensional phase boundary

 $m-"Cr_{3}s_{4}"$ (Sample: 2.5mg, 250~ 270mesh).

 $r-"Cr_2S_3"$ (Sample: 2.5mg, $250 \sim 270$ mesh).

reaction. The activation energies were found to be 188-194 kJ/mol and 224 \sim 227 kJ/mol for t-"Cr₂S₃ and r-"Cr₂S₃", respectively over the Po₂ range of $0.006 \sim 0.209$ atm.

REFERENCES

- 1) C.S. Tedmon, Jr. and A.U. Seybolt, Corrosion Science, 8(1988) 125.
- 2) A. Noel, J. Tudo and G. Tridot, Bull. de la SOC. Chim. de France, 1(1968) 95.
- 3) S.X. Basu and M. Taniguchi, 3. Thermal Anal., gI1984) 1209.
- 4) S.K. Basu and M. Taniguchi, Thermochimica Acta, 109(1986) 253.
- 5) M. Taniguchi, M. Wakihara and T. Uchida, Report of the Asahi Glass Foundaiton For Industrial Technology, 39(1981) 161.
- 6) H. Rau, J. Less-Common Metals, 55(1977) 205.
- 7) D.J. Young and M. Cohen, J. Electrochem. Soc., 124(1977) 775.