PROPERTIES OF DOUBLE CHLORIDES IN THE SYSTEMS ACI/SmCI, (A=Na-Csl

G. THIEL and H.J. SEIFERT Inorganic Chemistry, University Ch Kassel/FRG

ABSTRACT

The phase diagrams of the systems ACl/SmCi₃(A=Na-Cs) were reinvestigated by **DTA; the thermodynamic stabilities of the existing double chlorides were determined by solution calorimetry and e.m.f.-measurements in galvanic cells with solid electrolytes. Furthermore, their magnetic susceptibilities and crystal structures were measured.**

INTRODUCTION

In continuation of our research work about the properties of ternary chlorides in systems ACl/LnCl₃(Ln=Lal1), Cel2], Pr[3], Nd^{[4}]) we now have investigated the systems **of alkalimetal chlorides ACI with SmCI,** . **Of special interest in this context was the** question if the smaller ionic radius of Sm³⁺ (0.96 pm) compared with Nd (1.00 pm) would **already cause a variation in the coordination of the lanthanide ion.**

EXPERIMENTAL

Preparation of compounds: SmCl₃= dehydration of the hydrate in an HCl-stream. -SmCl_a: 6H₂O: crystallized from a solution of Sm₂O₃ (Fa. Ventron, 99.999%) in hydrochloric **acid. - Alkalimetal chlorides: p.A.-quality, Fa. Merck; dried at 500°C in HCI.**

Ternary chlorides: prepared by fusion in vacuum sealed quartz ampoules; if necessary annealed. All manipulations in a glove-box (10 ppm H₂O).

DTA-measurements: heating curves (2 deg min⁻¹). Preparation of the samples like **the ternary chlorides.**

Solution calorimetry: Home-built isoperibolic calorimeter. From the enthalpies of solutlon. AH'. the reaction enthalpies. AHf, were calculated:

 $\Delta H_{298}^f = \langle \Delta H_{298}^I(\text{SmCl}_3) + n \Delta H_{298}^I(\text{ACI}) \rangle - \Delta H_{298}^I(\text{A}_n\text{SmCl}_{n+3})$

Thermal Analysis Proc. 9th ICTA Congress, Jerusakm, Israel, 21-25 Aug. 1988 OtMQ-6031/88/\$03.50 (b **1988 Blsevier Science Publishers B.V.**

Fig. 1 Phase diagrams of the systems ACl/SmCl₃

X-ray-powder patterns: Philips PW lOSO/ goniometer. - High-temperature photos: Simon-Cuinier method (Standard: AI,O, with a= 475.9pm: c= 1299.0 pm).

Magnetic measurements: Gouy method at several temperatures in the range from -200 to 100^oC. Calibration with $HgCo(SCN_{\rm 4}: \chi_{\rm g}=16.515\; \cdot 10^{-6} \rm cm^3 \cdot g^{-1}$ at 18.5^oC. E.m.f.**measurements: A description of the galvanic cell is given elsewhere [51. For the formation of the SmCl,-richest compound the set-up of the cell was**

(C+Cl₂)/ACl/A⁺-conducting diaphragm/SmCl₃(+A_nSmCl_{n+3})/(C+Cl₂). **The solid electrolytes (compressed disks) were separated by a sintered disk of an A+-conducting glass powder, available for A=Na,K,Rb. The collected e.m.f./T values were subjected to a linear regression analysis. Temperature range: 300-48O'C.**

THE PHASE DIAGRAMS

Fig. 1 illustrates the results of the DTA-measurements. The melting point of SmCI, was found in good agreement with literature [6] at 668°C. - In general the older findings **of Korshunov et al. [71 could be confirmed, however with the following additions:**

NaCI-SmCI₃: An additional compound exists, Na₃Sm_sCI₁₈. Like the analogous phases **in the systems with La-Nd, there is a mixed-crystal region at higher temperature: the exact boundaries could not be fixed.**

KCI-SmCI₃ [8]: The compounds K₃SmCI₃ (with an polymorphic transformation at 354^oC) **and KSm,CI, are stable only at temperatures higher than 338°C and 292°C resp.. K,SmCI,** is the only ternary chloride of Sm³⁺ which could not be obtained by quenching without **decomposition.**

CsCI-SmCI,: An addtional compound. Cs,SmCI,, is existing with an incongruently melting point at 561°C.

CRYSTAL STRUCTURES AND MAGNETIC MOMENTS

The structures of most of the compounds A,SmCI, and ASm,CI, were already known by the work of Meyer: Rb₂SmCl_s. K₂SmCl_s=K₂PrCl_s-type [9]; CsSm₂Cl₇, RbSm₂Cl₇= **RbDy*Cl,-type and KSm,CI,= KDy,CI,-type** 1101.

The hitherto unknown structural dates are compiled in tab. 1. Cs,SmCl, is crystallizing with the Cs₂DyCl₅-structure [11]. The structures of the low-temperature modifications of Rb₃SmCl₆ and K₃SmCl₆ could not be solved from powder patterns. Na₃Sm_sCl₁₈ is isotypic to $K_aLa_sCl_{18}$ (= KLa $_{1.67}Cl_a$) [1].

Compound	Space group	a/pm	b /pm	c /pm	β /grad
$H-Cs_{3}SmCl_{\lambda}$	Fm ₃ m	1162.0			
$D-Cs_{3}SmCl_{\lambda}$	P2/c	1402.0	820.7	1320.6	107.70
$H-RbaSmCla$	Fm3m	1127.8			
$H-KaSmCla$	Fm3m	1107.8			
Cs ₂ SmCl ₂	Pnma	962.4	758.0	1528.6	
Na ₂ SmCl _g	Pnma	1204.8	835.9	769.2	
$Na3SmsCl18$	P6, /m	751.9		416.1	
SmCl ₃	$P6_{3}/m$	738.8		417.6	
SmCl ₃ [12]	$P6$ ₂ /m	737.8		417.1	

Table 1 Unit cell parameters for samarium double chlorides

For Sm³⁺ (4f⁵-electrons in ${}^{6}H_{8/2} \longrightarrow g = {}^{2}/7$) the magnetic moment $\mu_{eff} = g \cdot \sqrt{J(J+1)} \cdot \mu_{B}$ should be 0.84 $\mu_{\rm B}$. However, it is well known that moments of ~1.5 $\mu_{\rm B}$ at room temperature are found: caused by a small spin-orbit coupling the term-splitting is of the magnitude k·T; a temperature - independent paramagnetism must be added (2. order Zeeman-effect). Thus, the moments are temperature dependet; for SmCl₃ [13] they increase in the range from 80 to 289K from 1.04 to $1.56\mu_B$. The same behaviour was found for the ternary chlorides (tab. 2).

Compound	78K	130K	198K	293K	366K
SmCl ₃	1.06	1.22	1.39	1.62	1.79
CsSm ₂ Cl ₂	0.96	1.18	1.37	1.60	1.75
Cs ₂ SmCl ₅	0.92	1.15	1.36	1.60	1.77
Cs ₃ SmCl ₄	0.89	1.13	1.33	1.61	1.75
RbSm ₂ Cl ₇	0.99	1.20	1.38	1.61	1.77
$Rb_sSmCl_$	0.93	1.13	1.33	1.55	1.73
Rb, SmCl	0.89	1.08	1.32	1.59	1.74
KSm,Cl,	1.01	1.20	1.38	1.62	1.79
K, SmCl,	0.98	1.18	1.38	1.59	1.76
$NaaSmsCl18$	1.04	1.22	1.39	1.62	1.80
Na, SmC1.	1.00	1.19	1.38	1.60	1.77

Table 2 Magnetic moments $[\mu_B]$ in dependence on temperature

SOLUTION CALORIMETRY AND E.M.F. MEASUREMENTS

The solution enthalpies for the ternary chlorides at 298K (ΔH_{gas}^{1}), the formation enthalpies from ACI and SmCI₃ (ΔH_{gas}^f) and enthalpies of synproportionation (ΔH_{gas}^g) are compiled in table 3. ΔH_{20a}^1 (SmC t_3) was found to be -164.7[±] 0.2kJ· mol⁻¹ (Literature: -163.2 to 167.1 kJ· mol⁻¹ [14]. The enthalpies for dissolving the alkali metal chlorides in SmCl₄-solutions are (kJ· mol⁻¹): CsCl= 18.1; RbCl= 17.6; KCl= 17.9; NaCl= 4.5. As **'neighbour-compounds' for the synproportlonations those were elected. which are itselves stable at or near 298K.**

The e.m.f.-values were measured for the formation of each compound from ACl(A= Rb, K, Na) and the adjacent SmCl_a-richer compound. The regression line for the e.m.f./ T-values was transformed by multiplication with -nF to the Gibbs-Helmholtz equation AGr= AH'-T* AS'. By means of thermodynamic cycles.these functions were transformed to those for the reactions $nACl+SmCl₃ = A_nSmCl_{n+3}$, denoted ΔG^f , ΔH^f , ΔS^f , and further to the free enthalpies of synproportionation, $\Delta G^{\mathbf{s}}$, from the two neighboured compounds. **For high-temperature modifications the temperatures of formation (decomposition) were** calculated by the condition $\Delta G^{\alpha} = O \longrightarrow \Delta H^{\alpha} = T \cdot \Delta S^{\alpha}$.

Results of Measurements

0.5 RbCl+SmCl,= Rb,,sSmCI, s . **For this reaction the time to approach equilibrium was very long (some days). Therefore only one value was measured; the entropy was calcu**lated by using the ΔH^f -value from solution calorimetry $(-14.8kJ \cdot mol^{-1})$.

Measured e.m.f. at $673K: 340mV$. $\Delta G^r = \Delta G^f / kJ$. mol⁻¹ = 14.8-0.0024. T 1.5 RbCl+Rb_{0.5}SmCl_{3.5}= Rb₂SmCl₅ Δ G^r/kJ·mol⁻¹= -40.7+0.0090·T/K for $2RbCl+SmCl_7 = Rb_7SmCl_8$ $\Delta G^f/kJ$ -mol⁻¹= -55.5+0.0066-T/K $RbCl+Rb₂SmCl_s = H-Rb₃SmCl_s$ $\Delta G^r/kJ·mol⁻¹ = 22.7-0.0581·T/K$ $RbCl+Rb₂SmCl_s = D-Rb_aSmCl_s$ $\Delta G^r/kJ$ mol^r^r = 14.5-0.0459·T/KTransformation Temperature D \rightarrow H (fig. 2): $\Delta G^{r}(H)$ = $\Delta G^{r}(D)$ at 673K (400°C) Enthalpy of transformation = 8.2 kJ mol⁻¹; entropy of transformation= $12.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 $0.6 \text{ NaCl} + \text{SmCl}_3 = \text{Na}_{0.6} \text{SmCl}_{3.6}$ $\Delta G^r = \Delta G^f / k \text{J} \cdot \text{mol}^{-1} = 6.1 - 0.0149 \cdot \text{T} / \text{K}$

1.4 NaCl+Na_{0.6}SmCl_{3.6}= Na₂SmCl_s Δ G^r= 9.8-0.0233·T/K f or 2 NaCl+SmCl₃= Na₂SmCl₅ ΔG^f = 16.0-0.0382.T/K

Fig. 2 EMF vs. T values for the reaction $RbCl+Rb_2SmCl_s = Rb_3SmCl_s$

In tab. 4 the values for the thermodynamic functions at T= 298K are compiled as terms of the Gibbs-Helmholtz equation together with the ΔG^2 -values for this temperature.

Compound	ΔG^f	ΔH^f	$-(T \cdot \Delta S^f)$	ΔH ^f cal.	ΔG^{π}	$\Delta G^{\text{s}} = O$ at T/K
$Rb_{0.5}$ SmCl _{3.5}	-15.5	(-14.8)	-0.7	-14.8	-11	
$Rb_{2}SmCl_{2}$	-53.5	-55.5	$+2.0$	-55.8	-38.0	
$H-RbaSmCla$	-49.7	-32.8	-16.9	\blacksquare	$+5.9$	
$D-Rb3SmCl4$	-52.7	-41.0	-11.7	-40.3	$+0.9$	317 (44°C)
$K_{o,s}$ SmCl _{3.5}	- 6.6	-0.3	-6.3	-2.2	$+4.7$	
K, SmCl	-44.9	-41.8	-3.1	-41.2	-41.9	
$H-K_sSmCl_4$	-25.2	-3.2	-22.0		$+19.7$	
$D-K_{\star}SmCl_{\star}$	-29.3	-11.2	-18.1		$+15.4$	605 (323°C)
$Na_{0.6}SmCl_{3.6}$	$+1.7$	$+6.1$	-4.4	$+4.7$	$+0.1$	354 (81°C)
$Na_{\sim}SmCl_{\sim}$	$+4.6$	$+16.0$	-11.4	$+14.4$	$+2.9$	423 (150°C)

Table 4 Energies of the formation from ACI and SmCl₂ at 298K and free enthalpies of synproportionation $\Delta G_{\text{ass}}^{\text{s}}$ (in kJ· mol⁻¹)

CONCLUSIONS

- 1) In the system NaCl/SmCl₃ a phase Na₃Sm_sCl₁₈ exists at temperatures >81°C. Like the analogous phases in the other systems La-Nd it can be considered as a solid solution of NaCl in the LnCl₂-lattice. Additionally, a compound Na₂SmCl₅ is existing at t > 150°C, crystallizing with the K_s SrCl_s-structure.
- 2) In the systems of SmCl₃ with KCl, RbCl, CsCl there exist three compounds like in all other systems from La-Nd, A₃LnCl_a, A₂LnCl₃, ALn₂Cl₇. K₂SmCl_a and Rb₂SmCl_a are crystallizing with the K_2 PrCl₅-structure as compounds A_2 LnCl_s with the earlier lanthanides. As the ΔG^{σ} -values in table 4 show, these compounds are stable at room temperature. $Cs₂SmCl₅$ is the first 2:1-compound in this series with the Cs, DyCl_a-structure: the Sm³⁺ is located in a Cl_a-octahedron and not in a singlecapped prism as in the K_aPrCl_a-type. The coordination number has decreased from 7 to 6! According to the AH⁵-values in table 3, there is a small loss in lattice energy by the formation from the adjacent compounds. In this system Cs_aSmCl_a has the greatest ΔH^s -value. As all other compounds $A_s SmCl_s$, the high-temperature form has the elpasolite structure (C.N.=6), the D-modification crystallizes in the monoclinic K_aMoCl_a-type [15]. The compounds ASm_aCl_z with A=K,Cs are unstable

at ambient temperature. They have no longer the β -KEr₂F₇ structure but are crystallizing in the RbDy₂Cl₇- and KDy₂Cl₇-type resp.; the coordination number remains **seven.**

3) As the T· ΔS -term in table 4 demonstrates, all compounds unstable at ambient **temperature are existing from a .gain in entropy.**

This work was supported by the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie.

REFERENCES

- **1. H.-J. Selfert, H. Ffnk and G. Thiel. J.Less-Common Metals 110 (198s) 1959.**
- **2. H.-J. Seifert. J. Sandrock and G. Thlel, J. Therm.Anal. 31 (1987) 1309.**
- **3. H.-J. Seifert, J. Sandrock and J. Uebach, Z.anorg.ajlg.Chem. 555 (1987) 143.**
- **4. H.-J. Seifert, H. Fink u. J. Uebach, J.Therm.Anal. 32 (1988). in press.**
- **5. H.-J. Selfert and G. Thiel. J.Chem.Thermodyn. 14 (1982) 1159.**
- **6. LA. Kahwa. J. ThermAnal. 25 (1982) 525.**
- **7. B.C. Korshunov. D.V. Drobot. V.V. Bukhtiyarov and Z.N. Shevtsova, Z.Neorg.Khim. 9 (1964) 1427.**
- **8. G.I. Novikov. O.G. Polyachenok and S.A. Frid. Z.Neorg.Khim. 9 (1964) 472.**
- 9. G. Meyer and E. Hüttl, Z.anorg.allg.Chem. 497 (1983) 191.
- **10. G. Meyer, P. Ax, A. Cromm and H. Lfnzmeier, J.Less-Common Met. 98 (1984) 323.**
- **11. C. Meyer, J. Soose, A. Moritz, V. Vitt and T. Holljes, Z.anorg.allg.Chem. 521 (1985) 161.**
- **12. D.H. Templeton and C.H. Dauben, J.Amer.Chem.Soc. 76 (1954) 5237.**
- **13. H.H. Thomas, Thesis, Syracuse Univ., 1986.**
- **14. R. Blachnik and D. Selle. Thermochim.Acta 33 (1979) 301.**
- **15. Z.Amilius, B. van Laar and H.M. Rietvelt, Acta Crystallogr. B25 (1969) 400.**
- **16. S. Alenoard, Y. Le Fur, M.F. Gorius and M.T. Roux, J. Solid State Chem. 34 (1980) 79.**