#### PROPERTIES OF DOUBLE CHLORIDES IN THE SYSTEMS ACI/Smcl, (A=Na-Cs)

G. THIEL and H.J. SEIFERT Inorganic Chemistry, University Gh Kassel/FRG

## ABSTRACT

The phase diagrams of the systems ACI/SmCi<sub>3</sub>(A=Na-Cs) were reinvestigated by DTA; the thermodynamic stabilities of the existing double chlorides were determined by solution calorimetry and e.m.f.-measurements in galvanic cells with solid electrolytes. Furthermore, their magnetic susceptibilities and crystal structures were measured.

# INTRODUCTION

In continuation of our research work about the properties of ternary chlorides in systems  $ACl/LnCl_{3}(Ln=La[1], Ce[2], Pr[3], Nd[4])$  we now have investigated the systems of alkalimetal chlorides ACl with SmCl<sub>3</sub>. Of special interest in this context was the question if the smaller ionic radius of Sm<sup>3+</sup> (0.96 pm) compared with Nd (1.00 pm) would already cause a variation in the coordination of the lanthanide ion.

# EXPERIMENTAL

Preparation of compounds:  $SmCl_3$  = dehydration of the hydrate in an HCl-stream. -SmCl\_3. 6H<sub>2</sub>O: crystallized from a solution of  $Sm_2O_3$  (Fa. Ventron, 99.999%) in hydrochloric acid. - Alkalimetal chlorides: p.A.-quality, Fa. Merck; dried at 500°C in HCl.

Ternary chlorides: prepared by fusion in vacuum sealed quartz ampoules; if necessary annealed. All manipulations in a glove-box (10 ppm  $H_2O$ ).

DTA-measurements: heating curves (2 deg $\cdot$  min<sup>-1</sup>). Preparation of the samples like the ternary chlorides.

Solution calorimetry: Home-built isoperibolic calorimeter. From the enthalpies of solution,  $\Delta H^1$ , the reaction enthalpies,  $\Delta H^f$ , were calculated:

 $\Delta H_{298}^{f} = (\Delta H_{298}^{i} (SmCl_{3}) + n\Delta H_{298}^{i} (ACl)) - \Delta H_{298}^{i} (A_{n}SmCl_{n+3})$ 

Thermal Analysis Proc. 9th ICTA Congress, Jerusalem, Israel, 21–25 Aug. 1988 0040-6031/88/\$03.50 © 1988 Elsevier Science Publishers B.V. 276



Fig. 1 Phase diagrams of the systems ACl/SmCl<sub>3</sub>

X-ray-powder patterns: Philips PW 1050/25 goniometer. - High-temperature photos: Simon-Guinier method (Standard:  $AI_2O_3$  with a=475.9 pm; c=1299.0 pm).

Magnetic measurements: Gouy method at several temperatures in the range from -200 to 100°C. Calibration with HgCo(SCN)<sub>4</sub>:  $\chi_g$ = 16.515 · 10<sup>-6</sup>cm<sup>3</sup> · g<sup>-1</sup> at 18.5°C. E.m.f.-measurements: A description of the galvanic cell is given elsewhere [5]. For the formation of the SmCl<sub>2</sub>-richest compound the set-up of the cell was

 $(C+Cl_2)/ACI/A^+$ -conducting diaphragm/SmCl<sub>3</sub>(+A<sub>n</sub>SmCl<sub>n+3</sub>)/(C+Cl<sub>2</sub>). The solid electrolytes (compressed disks) were separated by a sintered disk of an A<sup>+</sup>-conducting glass powder, available for A=Na,K,Rb. The collected e.m.f./T values were subjected to a linear regression analysis. Temperature range: 300-480°C.

## THE PHASE DIAGRAMS

Fig. 1 illustrates the results of the DTA-measurements. The melting point of  $SmCl_3$  was found in good agreement with literature [6] at 668°C. – In general the older findings of Korshunov et al. [7] could be confirmed, however with the following additions:

NaCl-SmCl<sub>3</sub>: An additional compound exists,  $Na_3Sm_5Cl_{16}$ . Like the analogous phases in the systems with La-Nd, there is a mixed-crystal region at higher temperature; the exact boundaries could not be fixed.

KCl-SmCl<sub>3</sub> [8]: The compounds  $K_3$ SmCl<sub>3</sub> (with an polymorphic transformation at 354°C) and KSm<sub>2</sub>Cl<sub>7</sub> are stable only at temperatures higher than 338°C and 292°C resp..  $K_3$ SmCl<sub>6</sub> is the only ternary chloride of Sm<sup>3+</sup> which could not be obtained by quenching without decomposition.

 $CsCl-SmCl_3$ : An additional compound.  $Cs_2SmCl_5$ , is existing with an incongruently melting point at 561°C.

# CRYSTAL STRUCTURES AND MAGNETIC MOMENTS

The structures of most of the compounds  $A_2SmCl_s$  and  $ASm_2Cl_r$  were already known by the work of Meyer:  $Rb_2SmCl_s$ ,  $K_2SmCl_s=K_2PrCl_s$ -type [9];  $CsSm_2Cl_r$ ,  $RbSm_2Cl_r=RbDy_2Cl_r$ -type and  $KSm_2Cl_r=KDy_2Cl_r$ -type [10].

The hitherto unknown structural dates are compiled in tab. 1.  $Cs_2SmCl_s$  is crystallizing with the  $Cs_2DyCl_s$ -structure [11]. The structures of the low-temperature modifications of Rb<sub>3</sub>SmCl<sub>6</sub> and K<sub>3</sub>SmCl<sub>6</sub> could not be solved from powder patterns. Na<sub>3</sub>Sm<sub>5</sub>Cl<sub>18</sub> is isotypic to K<sub>3</sub>La<sub>5</sub>Cl<sub>18</sub> (= KLa <sub>1.67</sub>Cl<sub>6</sub>) [1].

| Compound                                         | Space group        | a/pm          | b/pm  | c/pm   | β/grad |
|--------------------------------------------------|--------------------|---------------|-------|--------|--------|
| H-Cs <sub>3</sub> SmCl <sub>6</sub>              | Fm3m               | 1162.0        |       |        |        |
| D-Cs <sub>3</sub> SmCl <sub>6</sub>              | <b>P2</b> ,/c      | 1402.0        | 820.7 | 1320.6 | 107.70 |
| H-Rb <sub>3</sub> SmCl <sub>6</sub>              | Fm3m               | 1127.8        |       |        |        |
| H-K <sub>3</sub> SmCl <sub>6</sub>               | Fm3m               | 1107.8        |       |        |        |
| Cs <sub>2</sub> SmCl <sub>s</sub>                | Pnma               | 962.4         | 758.0 | 1528.6 |        |
| Na <sub>2</sub> SmCl <sub>5</sub>                | Pnma               | 1204.8        | 835.9 | 769.2  |        |
| Na <sub>3</sub> Sm <sub>5</sub> Cl <sub>18</sub> | P6 <sub>3</sub> /m | 751.9         |       | 416.1  |        |
| SmCl <sub>3</sub>                                | P6₃/m              | 738.8         |       | 417.6  |        |
| SmCl <sub>3</sub> [12]                           | P6 <sub>3</sub> /m | 737. <b>8</b> |       | 417.1  |        |

Table 1 Unit cell parameters for samarium double chlorides

For Sm<sup>3+</sup> (4f<sup>5</sup>-electrons in <sup>6</sup>H<sub>8/2</sub>  $\rightarrow$  g = <sup>2</sup>/7) the magnetic moment  $\mu_{eff} = g \cdot \sqrt{J(j+1)} \cdot \mu_B$ should be 0.84 $\mu_B$ . However, it is well known that moments of ~1.5 $\mu_B$  at room temperature are found: caused by a small spin-orbit coupling the term-splitting is of the magnitude k·T; a temperature - independent paramagnetism must be added (2. order Zeeman-effect). Thus, the moments are temperature dependet; for SmCl<sub>3</sub> [13] they increase in the range from 80 to 289K from 1.04 to 1.56 $\mu_B$ . The same behaviour was found for the ternary chlorides (tab. 2).

| Table 3 | 2 1 | Magnetic | moments | [µ] | in | depend | ience | on | tempe | rature |
|---------|-----|----------|---------|-----|----|--------|-------|----|-------|--------|
|---------|-----|----------|---------|-----|----|--------|-------|----|-------|--------|

| Compound                                         | 78K  | 130K | 198K | 293K | 366K |
|--------------------------------------------------|------|------|------|------|------|
| SmCl <sub>3</sub>                                | 1.06 | 1.22 | 1.39 | 1.62 | 1.79 |
| CsSm <sub>2</sub> Cl <sub>7</sub>                | 0.96 | i.18 | 1.37 | 1.60 | 1.75 |
| Cs <sub>2</sub> SmCl <sub>s</sub>                | 0.92 | 1.15 | 1.36 | 1.60 | 1.77 |
| Cs <sub>3</sub> SmCl                             | 0.89 | 1.13 | 1.33 | 1.61 | 1.75 |
| RbSm <sub>2</sub> Cl <sub>7</sub>                | 0.99 | 1.20 | 1.38 | 1.61 | 1.77 |
| Rb <sub>2</sub> SmCl <sub>s</sub>                | 0.93 | 1.13 | 1.33 | 1.55 | 1.73 |
| Rb <sub>3</sub> SmCl <sub>o</sub>                | 0.89 | 1.08 | 1.32 | 1.59 | 1.74 |
| KSm <sub>2</sub> Cl <sub>7</sub>                 | 1.01 | 1.20 | 1.38 | 1.62 | 1.79 |
| K <sub>2</sub> SmCl <sub>5</sub>                 | 0.98 | 1.18 | 1.38 | 1.59 | 1.76 |
| Na <sub>3</sub> Sm <sub>5</sub> Cl <sub>18</sub> | 1.04 | 1.22 | 1.39 | 1.62 | 1.80 |
| Na_SmCl_                                         | 1.00 | 1.19 | 1.38 | 1.60 | 1.77 |

## SOLUTION CALORIMETRY AND E.M.F. MEASUREMENTS

The solution enthalpies for the ternary chlorides at 298 K ( $\Delta H_{298}^{i}$ ), the formation enthalpies from ACI and SmCl<sub>3</sub> ( $\Delta H_{298}^{f}$ ) and enthalpies of synproportionation ( $\Delta H_{298}^{s}$ ) are compiled in table 3.  $\Delta H_{298}^{i}$  (SmCl<sub>3</sub>) was found to be -164.7<sup>±</sup> 0.2kJ· mol<sup>-1</sup> (Literature: -163.2 to 167.1 kJ· mol<sup>-1</sup> [14). The enthalpies for dissolving the alkali metal chlorides in SmCl<sub>3</sub>-solutions are (kJ· mol<sup>-1</sup>): CsCl= 18.1; RbCl= 17.6; KCl= 17.9; NaCl= 4.5. As 'neighbour-compounds' for the synproportionations those were elected, which are itselves stable at or near 298 K.

The e.m.f.-values were measured for the formation of each compound from ACl(A= Rb,K,Na) and the adjacent SmCl<sub>3</sub>-richer compound. The regression line for the e.m.f./ T-values was transformed by multiplication with  $-n \cdot F$  to the Gibbs-Helmholtz equation  $\Delta G^{r} = \Delta H^{r} - T \cdot \Delta S^{r}$ . By means of thermodynamic cycles, these functions were transformed to those for the reactions  $nACl+SmCl_{3} = A_{n}SmCl_{n+3}$ , denoted  $\Delta G^{f}$ ,  $\Delta H^{f}$ ,  $\Delta S^{f}$ , and further to the free enthalpies of synproportionation,  $\Delta G^{s}$ , from the two neighboured compounds. For high-temperature modifications the temperatures of formation (decomposition) were calculated by the condition  $\Delta G^{s} = O \longrightarrow \Delta H^{s} = T \cdot \Delta S^{s}$ .

| Compound                                                         | ∆H <sup>1</sup><br>298 | ∆H <sup>f</sup><br>298 | ∆H <sup>s</sup><br>298 | synprop. from                                                        | Literature [14]                                 |
|------------------------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------------------|-------------------------------------------------|
| <sup>1</sup> / <sub>2</sub> CsSm <sub>2</sub> Cl <sub>7</sub>    | -137.8                 | -17.9                  | - 9.2                  | Cs <sub>2</sub> SmCl <sub>3</sub> ,SmCl <sub>3</sub>                 | ΔH <sup>1</sup> :-127.25 ΔH <sup>f</sup> =-28.7 |
| Cs <sub>2</sub> SmCl <sub>5</sub>                                | - 93.7                 | -34.8                  | + 6.2                  | Cs <sub>3</sub> SmCl <sub>6</sub> ,CsSm <sub>2</sub> Cl <sub>7</sub> |                                                 |
| Cs <sub>3</sub> SmCl <sub>6</sub>                                | - 54.1                 | -\$6.3                 | -24.4                  | CsCl, Cs <sub>2</sub> SmCl <sub>s</sub>                              | ΔH <sup>1</sup> :- 53.9 ΔH <sup>f</sup> =-58.6  |
| <sup>1</sup> /2 RbSm <sub>2</sub> Cl <sub>7</sub>                | -141.1                 | -14.8                  | - 1.6                  | Rb <sub>2</sub> SmCl <sub>5</sub> ,SmCl <sub>3</sub>                 |                                                 |
| Rb <sub>2</sub> SmCl <sub>3</sub>                                | - 73.3                 | -55.8                  | -43.9                  | RbCl, RbSm <sub>2</sub> Cl <sub>7</sub>                              |                                                 |
| Rb <sub>3</sub> SmCl <sub>6</sub>                                | - 71.6                 | -40.3                  | +12.6                  | RbCI, Rb <sub>2</sub> NdCI <sub>s</sub>                              |                                                 |
| <sup>1</sup> / <sub>2</sub> KSm <sub>2</sub> Cl <sub>7</sub>     | -153.7                 | - 2.2                  | + 8.1                  | K <sub>2</sub> SmCl <sub>5</sub> , SmCl <sub>3</sub>                 | ΔH <sup>1</sup> :-155.05 ΔH <sup>f</sup> :- 0.9 |
| K <sub>2</sub> SmCl <sub>s</sub>                                 | - 87.7                 | - 41.2                 | - 41.2                 | KCl, SmCl <sub>3</sub>                                               |                                                 |
| K <sub>3</sub> SmCl <sub>6</sub>                                 | -                      | -                      | -                      | -                                                                    | ΔH <sup>1</sup> :-112.5 ΔH <sup>f</sup> :-16.9  |
| <sup>1</sup> /s Na <sub>3</sub> Sm <sub>5</sub> Cl <sub>18</sub> | -166.7                 | + 4.7                  |                        |                                                                      |                                                 |
| Na <sub>2</sub> SmCl <sub>2</sub>                                | -170.1                 | +14.4                  | -                      | -                                                                    |                                                 |

| Table 3 | Solution | enthalpies | ۵HI | and rel | lated | enthal | lpy va | lues | in k | J∙ mol` | -1 |
|---------|----------|------------|-----|---------|-------|--------|--------|------|------|---------|----|
|---------|----------|------------|-----|---------|-------|--------|--------|------|------|---------|----|

# **Results of Measurements**

0.5 RbCl+SmCl<sub>3</sub>= Rb<sub>0.5</sub>SmCl<sub>3.5</sub>. For this reaction the time to approach equilibrium was very long (some days). Therefore only one value was measured; the entropy was calculated by using the  $\Delta H^{f}$ -value from solution calorimetry (-14.8kJ· mol<sup>-1</sup>).

 $\Delta G^{r} = \Delta G^{f} / k J \cdot mol^{-1} = 14.8 - 0.0024 \cdot T$ Measured e.m.f. at 673K: 340mV. 1.5 RbCl+Rb<sub>0.5</sub>SmCl<sub>3.5</sub>= Rb<sub>2</sub>SmCl<sub>5</sub> ΔG<sup>r</sup>/kJ·mol<sup>-1</sup>= -40.7+0.0090·T/K for 2RbCl+SmCl\_= Rb\_SmCl\_  $\Delta G^{f}/kJ \cdot mol^{-1} = -55.5 + 0.0066 \cdot T/K$ RbCl+Rb<sub>2</sub>SmCl<sub>5</sub>= H-Rb<sub>3</sub>SmCl<sub>6</sub> ΔG<sup>F</sup>/kJ·mol<sup>-1</sup>= 22.7-0.0581·T/K RbCl+Rb<sub>2</sub>SmCl<sub>5</sub>= D-Rb<sub>3</sub>SmCl<sub>6</sub>  $\Delta G^{r}/kJ mol^{-1} = 14.5 - 0.0459 T/K$ Transformation Temperature  $D \rightarrow H$  (fig. 2):  $\Delta G^{r}(H) = \Delta G^{r}(D)$  at 673 K (400°C) Enthalpy of transformation = 8.2 kJ mol<sup>-1</sup>; entropy of transformation =  $12.2 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ 

| 0.5 KCl+SmCl <sub>3</sub> = K <sub>0.5</sub> SmCl <sub>3,5</sub>                | $\Delta \mathbf{G}^{\mathbf{r}} \equiv \Delta \mathbf{G}^{\mathbf{f}} / \mathbf{k} \mathbf{J} \cdot \mathbf{mol}^{-1} = 0.3 - 0.0210 \cdot \mathbf{T} / \mathbf{K}$ |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.5 KCl+K <sub>0.5</sub> SmCl <sub>3.5</sub> = K <sub>2</sub> SmCl <sub>5</sub> | $\Delta G^{r}/kJ mol^{-1} = -41.5+0.0105 T/K$                                                                                                                       |
| for 2KCl+SmCl <sub>3</sub> = K <sub>2</sub> SmCl <sub>5</sub>                   | $\Delta G^{f}/kJ \cdot mol^{-1} = -41.5 - 0.0105 \cdot T/K$                                                                                                         |
| KCl+K2SmCl5= H-K3SmCl                                                           | ∆G <sup>r</sup> /kJ·mol <sup>-1</sup> = 38.6-0.0634·T/K                                                                                                             |
| $KCI+K_2SmCI_5 = D-K_3SmCI_6$                                                   | $\Delta G^{r}/k j mol^{-1} = 30.4 - 0.0502 T/K$                                                                                                                     |
| Transformation temperature $D \rightarrow H$ :                                  | $\Delta G^{r}(H) = \Delta G^{r}(D)$ at 615K (342°C)                                                                                                                 |
| Enthalpiy of transformation= 8.2kJ <sup>.</sup> mo                              | l <sup>-1</sup> ; entropy of transformation = 13.2 J·K <sup>-1</sup> ·mol <sup>-1</sup>                                                                             |
| 0.6 NaCl+SmCl <sub>3</sub> = Na <sub>0.6</sub> SmCl <sub>3.6</sub>              | $\Delta \mathbf{G}^{\mathbf{r}} \equiv \Delta \mathbf{G}^{\mathbf{f}} / \mathbf{k} \mathbf{J} \cdot \mathbf{mol}^{-1} = 6.1 - 0.0149 \cdot \mathbf{T} / \mathbf{K}$ |

1.4 NaCl+Na<sub>0.6</sub>SmCl<sub>3.6</sub> =  $Na_2$ SmCl<sub>s</sub> for 2 NaCl+SmCl<sub>3</sub>= Na<sub>2</sub>SmCl<sub>3</sub>

∆G<sup>r</sup>= 9.8-0.0233 · T/K  $\Delta G^{f} = 16.0 - 0.0382 \cdot T/K$ 



Fig. 2 EMF vs. T values for the reaction RbCl+Rb<sub>2</sub>SmCl<sub>5</sub> = Rb<sub>3</sub>SmCl<sub>6</sub>

In tab. 4 the values for the thermodynamic functions at T= 298K are compiled as terms of the Gibbs-Helmholtz equation together with the  $\Delta G^{s}$ -values for this temperature.

| Compound                              | ∆Gf   | ΔH <sup>f</sup> | -(T·∆S <sup>f</sup> ) | ∆H <sup>f</sup><br>cal | ∆Gª   | ∆G <sup>s</sup> =O at T/K |
|---------------------------------------|-------|-----------------|-----------------------|------------------------|-------|---------------------------|
| Rb <sub>o.s</sub> SmCl <sub>a.s</sub> | -15.5 | (-14.8)         | - 0.7                 | -14.8                  | -11   |                           |
| Rb <sub>2</sub> SmCl <sub>5</sub>     | -53.5 | -55.5           | + 2.0                 | -55.8                  | -38.0 |                           |
| H-Rb <sub>3</sub> SmCl <sub>6</sub>   | -49.7 | -32.8           | -16.9                 | -                      | + 5.9 |                           |
| D-Rb <sub>3</sub> SmCl <sub>6</sub>   | -52.7 | -41.0           | -11.7                 | -40.3                  | + 0.9 | 317 (44°C)                |
| K <sub>o.s</sub> SmCl <sub>3.s</sub>  | - 6.6 | - 0.3           | - 6.3                 | - 2.2                  | + 4.7 |                           |
| K <sub>2</sub> SmCl <sub>5</sub>      | -44.9 | -41.8           | - 3.1                 | -41.2                  | -41.9 |                           |
| H-K <sub>3</sub> SmCl                 | -25.2 | - 3.2           | -22.0                 | -                      | +19.7 |                           |
| D-K <sub>3</sub> SmCl                 | -29.3 | -11.2           | -18.1                 | -                      | +15.4 | 605 (323°C)               |
| Na <sub>0.6</sub> SmCl <sub>3.6</sub> | + 1.7 | + 6.1           | - 4.4                 | + 4.7                  | + 0.1 | 354 (81°C)                |
| Na <sub>s</sub> SmCl                  | + 4.6 | +16.0           | - 11.4                | +14.4                  | + 2.9 | 423 (150°C)               |

Table 4 Energies of the formation from ACl and SmCl<sub>3</sub> at 298K and free enthalpies of symproportionation  $\Delta G_{nee}^{s}$  (in kJ mol<sup>-1</sup>)

## CONCLUSIONS

- In the system NaCl/SmCl<sub>3</sub> a phase Na<sub>3</sub>Sm<sub>5</sub>Cl<sub>10</sub> exists at temperatures >81°C. Like the analogous phases in the other systems La-Nd it can be considered as a solid solution of NaCl in the LnCl<sub>3</sub>-lattice. Additionally, a compound Na<sub>2</sub>SmCl<sub>5</sub> is existing at t > 150°C, crystallizing with the K<sub>2</sub>SrCl<sub>5</sub>-structure.
- 2) In the systems of SmCl<sub>3</sub> with KCl, RbCl, CsCl there exist three compounds like in all other systems from La-Nd,  $A_3LnCl_6$ ,  $A_2LnCl_5$ ,  $ALn_2Cl_7$ .  $K_2SmCl_5$  and  $Rb_2SmCl_5$ are crystallizing with the  $K_2PrCl_5$ -structure as compounds  $A_2LnCl_5$  with the earlier lanthanides. As the  $\Delta G^*$ -values in table 4 show, these compounds are stable at room temperature.  $Cs_2SmCl_5$  is the first 2:1-compound in this series with the  $Cs_2DyCl_5$ -structure: the Sm<sup>3+</sup> is located in a Cl\_6-octahedron and not in a singlecapped prism as in the  $K_2PrCl_5$ -type. The coordination number has decreased from 7 to 6! According to the  $\Delta H^*$ -values in table 3, there is a small loss in lattice energy by the formation from the adjacent compounds. In this system  $Cs_3SmCl_6$ has the greatest  $\Delta H^*$ -value. As all other compounds  $A_3SmCl_6$ , the high-temperature form has the elpasolite structure (C.N.=6), the D-modification crystallizes in the monoclinic  $K_3MoCl_6$ -type [15]. The compounds  $ASm_2Cl_7$  with A=K,Cs are unstable

at ambient temperature. They have no longer the  $\beta$ -KEr<sub>2</sub>F<sub>7</sub> structure but are crystallizing in the RbDy<sub>2</sub>Cl<sub>7</sub>- and KDy<sub>2</sub>Cl<sub>7</sub>-type resp.; the coordination number remains seven.

3) As the T  $\Delta$ S-term in table 4 demonstrates, all compounds unstable at ambient temperature are existing from a gain in entropy.

This work was supported by the Deutsche Forschungsgemeinschaft and the Fond der Chemischen Industrie.

#### REFERENCES

- 1. H.-J. Seifert, H. Fink and G. Thiel, J.Less-Common Metals 110 (1985) 1959.
- 2. H.-J. Seifert, J. Sandrock and G. Thiel, J. Therm.Anal. 31 (1987) 1309.
- 3. H.-J. Seifert, J. Sandrock and J. Uebach, Z.anorg.allg.Chem. 555 (1987) 143.
- 4. H.-J. Seifert, H. Fink u. J. Uebach, J.Therm.Anal. 32 (1988), in press.
- 5. H.-J. Seifert and G. Thiel, J.Chem.Thermodyn. 14 (1982) 1159.
- 6. I.A. Kahwa, J. Therm.Anal. 25 (1982) 525.
- B.G. Korshunov, D.V. Drobot, V.V. Bukhtiyarov and Z.N. Shevtsova, Z.Neorg.Khim. 9 (1964) 1427.
- 8. G.I. Novikov, O.G. Polyachenok and S.A. Frid, Z.Neorg.Khim. 9 (1964) 472.
- 9. G. Meyer and E. Hüttl, Z.anorg.allg.Chem. 497 (1983) 191.
- 10. G. Meyer, P. Ax, A. Cromm and H. Linzmeier, J.Less-Common Met. 98 (1984) 323.
- 11. G. Meyer, J. Soose, A. Moritz, V. Vitt and T. Holljes, Z.anorg.allg.Chem. 521 (1985) 161.
- 12. D.H. Templeton and C.H. Dauben, J.Amer.Chem.Soc. 76 (1954) 5237.
- 13. H.H. Thomas, Thesis, Syracuse Univ., 1986.
- 14. R. Blachnik and D. Selle, Thermochim.Acta 33 (1979) 301.
- 15. Z.Amilius, B. van Laar and H.M. Rietvelt, Acta Crystallogr. B25 (1969) 400.
- 16. S. Alenoard, Y. Le Fur, M.F. Gorius and M.T. Roux, J. Solid State Chem. 34 (1980) 79.