CRYSTALLIZATION KINETICS OF SOME Ge-Sb-Se Glasses

S. BORDAS¹, M.T. CLAVAGUERA-MORA¹, and N. CLAVAGUERA²

- 1 Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain.
- 2 Departament d'Estructura i Constituents de la Matèria, Facultad de Física, Universitat de Barcelona, 08028-Barcelona, Spain.

ABSTRACT

The crystallization kinetics of alloys in the Ge-Sb-Se system was investigated by means of differential thermal analysis, differential scanning calorimetry and X-ray diffraction. The calorimetric results obtained both for isothermal and continuous heating experiments were successfully interpreted with the same set of kinetic parameters. The Johnson-Mehl-Avrami-Erofe⁻ev equation with a rate constant following the Arrhenius behaviour gives the best fit to the experimental data. The values obtained for the effective activation energy increase from 75 to 229 kJ/mol with Sb content, except for pure selenium (81 kJ/mol). The pre-exponential factor of the rate constant increases at the same time from 1x10⁶ to 1x10¹⁶ s⁻¹, except for pure selenium (4x10⁸). The kinetic exponent ranges between 1.2. and 2.5 without any clear trend against composition. Some kind of compensation effect occurs that may be attributed to the primary crystallization of Sb₂Se₃ in most of the glasses.

INTRODUCTION

Glasses of the Ge-Sb-Se system have the interesting optical property of being transparent to infrared radiation from 2 to 16 μ m. As a consequence, their optical properties have been studied in detail [1]. Further studies have been carried on their electrical properties, density, microhardness, heat capacities and elastic and

Thermal Analysis Proc. 9th ICTA Congress, Jerusalem, Israel, 21–25 Aug. 1988 0040-6031/88/\$03.50 © 1988 Elsevier Science Publishers B.V. dilatometric properties [2]. All these properties have been related to the phase diagram of the system [3], however no crystallization kinetic studies were reported but only the glass forming region of the ternary system [4]. In the present paper the crystallization kinetics of some of these glasses has been studied from calorimetric measurements and is reported in the present paper.

EXPERIMENTAL PROCEDURE AND RESULTS

The preparation details of the air-quenched samples were given elsewhere [4]. The amorphous state of all the samples was checked by X-ray powder diffraction. Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) were performed using a DSC II Perkin Elmer and a STA 429 Netzsch equipment, respectively. Eleven glasses of different compositions in the subsystem GeSe₂-Sb₂Se₃-Se were prepared. Their compositions are given in Fig. 1 with the corresponding part of the ternary phase diagram. Åб shown in this figure most of these compositions lie on the region of primary solidification (under equilibrium regime) of Sb₂Se₂ crystals. DSC analysis was carried out on 10-15 mg of powdered sample and allowed to determine the crystallized fraction, , x, and the rate of crystallization, dx/dt, as a function of temperature, T, in continuous heating experiments, or time, t, in isothermal ones.

Fig. 1.- Part of the phase diagram of the Ge-Sb-Se system showing the studied compositions.

294

The kinetic behaviour upon crystallization was explained taking a rate of reaction given by

$$dx/dt = k(T) f(x)$$

where k(T) is the rate constant of the form $k(T)=k_0\exp(-E/RT)$ with k_0 the pre-exponential factor and E the effecttive activation energy, both being independent of temperature, and f(x) follows the Johnson-Mehl-Avrami-Erofe⁻ev equation.

$$f(x) = n(1-x)[-ln(1-x)](n-1)/n$$

The value of E was deduced from the logarithmic plot of dx/dt as a function of 1/T at a fixed value of x. The values of $\ln(k_0)$ and n were deduced from the plot of $\ln[k_0f(x)]$ as a function of $-\ln(1-x)$ both for isothermal and continuous heating conditions by use of the expression [5]

$$\ln[k_0 f(x)] = \ln(dx/dt) + E/RT$$

and comparison with the plot of ln[f(x)] as a function of -ln(1-x). Fig. 2 shows, as an example, such a plot for the $Ge_{7.5}Sb_{17.5}Se_{75}$ glass. The values obtained for the activation energy, E, the pre-exponential factor, k_0 , and the kinetic exponent, n, are given in Table 1.

DISCUSSION AND CONCLUSIONS

As shown in Table 1, both the pre-exponential factor and the effective activation energy increase with increasing antimony content whereas the kinetic exponent shows no clear trend against composition. Therefore, there is the possibility of a compensation effect (6). Fig. 3 shows the plot of E versus $ln(k_0)$. There is a linear relationship between both quantities in most of the glasses.

Fig. 2.- Plot of $\ln[k_0f(x)]$ vs. $\ln(1-x)$ for the sample with composition Ge_{7.5}Sb_{17.5}Se₇₅. Full line is the plot for n=1.12

Fig. 3.- Compensation plot for the crystallization of glasses in the GeSe $_2$ -Sb $_2$ Se $_3$ -Se system.

Samplé Ge :	compos Sd :	ition Se	E kJ∕mol	n	ln(k ₀) k ₀ in s ⁻¹
0	0	100	81±3	2.5±0.1	19.7±0.5
2.5	7.5	90	74	2.2	14.0
5	10	85	107	1.6	19.6
5	15	80	122	1.5	23.5
7.5	17.5	75	123	1.2	22.2
10	20	70	166	1.5	30.2
11.25	21.25	67.5	187	1.2	34.2
15.79	21.05	63.16	189	1.4	28.5
14.1	23.08	62.82	227	1.3	37.4
12.5	25	62.5	208	1.9	34.0
9.53	28.57	61.9	208	1.9	35.8

Table 1 .- Kinetic parameters of the samples

The discrepancies occur for pure selenium and glasses with a composition near the binary eutectic, E, of the $GeSe_2-Sb_2Se_3$ system. As most of the remaining glasses have a composition in the region of primary crystallization of Sb_2Se_3 crystal, under equilibrium condition, we conclude that probably the compensation effect reflects the fact that the first crystallization product is Sb_2Se_3 in these alloy glasses.

ACKNOWLEDGEMENTS

This work was suported by the "Comisión Asesora de Investigación científica y Técnica" (CAICYT) project No 759/84.

- 1 J.A. Savage, P.J. Webber and A.M. Pitt, J. Mater. Sci. <u>13</u> (1978) 859.
- 2 A. Giridhar, P.S.L. Narasimham and S. Mahadevan, J. Non-Cryst. Solids <u>37</u> (1980) 165; ibid., <u>43</u> (1981) 29, 301, 365; ibid. 57 (1983) 423; ibid., <u>65</u> (1984) 233.
- 3 S. Bordas, M.T. Clavaguera-Mora and B. Legendre, Thermochimica Acta <u>56</u> (1982) 161.
- 4 S. Bordas, J. Casas-Vázquez, N. Clavaguera and M.T. Clavaguera-Mora, Thermochimica Acta <u>28</u> (1979) 387.
- 5 S. Suriñach, M.D. Baró, M.T. Clavaguera-Mora and N. Clavaguera, J. Non-Cryst. Solids <u>58</u> (1983) 209.
- 6 A.K. Galwey, Adv. Catal. 26 (1977) 247.