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ABSTRACT 

Integrals of the form /TA,T” e- E/RT dT have been evaluated for integer and fractional 
values of m = b -2. The results of the numerical integration are presented for Arrhenius 
integrals having negative as well as positive exponents. Equations have been derived which 
relate m to the natural logarithm of the p(x) function. Methods for the rapid evaluation of 
general temperature integrals for any combination of m and x, from four different ap- 
proximations, are also presented. 

INTRODUCTION 

Non-isothermal methods have been widely used for the evaluation of 
kinetic parameters of decomposition reactions [l-7]. The rate of a decom- 
position process can be described [5] as the product of two separate 
functions of temperature and conversion as 

0) 
where the function k(r) is temperature dependent and f( (Y) is the conversion 
function which depends on the reaction mechanism. Earlier workers [S] have 
shown that for a series of isothermal mass-loss measurements, plots of log t, 
the time taken to reach a percentage mass loss, vs. l/T, the reciprocal 
absolute temperature, are linear. This shows that the temperature depen- 
dence is of the Arrhenius type, and therefore k(r) can be considered as the 
rate constant, k 
k =A e-WRT 

(2) 
where A and E are the Arrhenius pre-exponential factor and activation 
energy respectively, and R is the gas constant. 
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Substituting in eqn. (l), we get 

dcu 
- = A e-E/RTf( a) 
dt 

(3) 

For a linear heating rate +, eqn. (3) becomes 

da: A -Vrf( a) -z-e 
dT + 

(4) 

Equation (4) may be considered as the general equation connecting E, A 
and n [when f(a) is assumed as (1 - (Y)” i 

Most of the existing methods to evaluate the 
eqn. (4) in three different approaches [9], viz. 
approximation. The most accurate among them 

kinetic parameters utilize 
integral, differential and 
are the integral methods 

[5,101. 
On rearranging and integrating eqn. (4) between the limits of (Y = 0 at T 

and (Y at T, we get 

where J,“[da/f( a)] is the conversion integral. The lower limit Ti is generally 
taken as zero for the ease of integration [ll]. The integral form of the LHS is 
g( CY) and thus, eqn. (5) can be written as 

g(a) = $iTepE/RTdT (6) 

In the integral methods, it is usually assumed that the pre-exponential 
factor, A is temperature independent [3,4]. However, the transition state 
theory predicts that A is temperature dependent [12,13]. Therefore, eqn. (6) 
becomes 

A(T, T 
g(cr) = ~1 e-E’RTdT 

0 

The temperature dependence of A can be represented as 

A (T) = AmT” (8) 

Substituting eqn. (8) in eqn. (7), we get 

g(a)= L!!$IlT,-E/RTdT 

0 
(9) 

A, is now temperature independent. 
There are two general cases where m = 0.5 and 1.0 for solid state 

reactions. However, other possibilities have also been found where m varies 
from - 4 to + 2 [14]. When x = E/RT is substituted, eqn. (9) becomes 

g(a) = $( ~)““J,“( 3) dx 
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when b = (m + 2) is substituted, eqn. (10) reverts to the standard form of 

the incomplete gamma function, 
J 

cc e-u 

X FdUY viz* 

g(a) = $( ;)b-’ p(x) 

On rearranging and taking logarithms, eqn. (11) becomes 

(11) 

Thus E and A can be calculated, if the values of g(a) and p(x) are known. 
The values of the temperature integral, p(x) can be evaluated from simple 

approximation [U-17], numerical integration [l&20] and series solutions 
[21-251. The most important among the series solutions are Scholmilch, 
semiconvergent, etc. The series solutions for p(x) with b = 2 have been 
reviewed by Wendlandt and co-workers [26]. Segal [27] has derived ap- 
proximations of the temperature integrals by assuming different positive 
values of b. Several other studies were also reported for evaluating tempera- 
ture integral values with b = 0, + l/2, f 1, f 3/2 and +2 using different 
approaches [28-311. 

Recent papers [32-341 have compared different approximations and 
shown that a Scholmilch series is the most accurate for x > 15. We have also 
[35] proposed a new series approximation for the p(x) function which gave 
very close values to those of the Scholmilch approximation. In the present 
study, we have attempted to evaluate the p(x) values from four different 
approximations for the range of values of b = -2 (0.5) +4 [or m = -4 (0.5) 
+ 21 and x = 15 (5) 60. The computation and curve fits were done by a CDC 
computer using a FORTRAN IV program. 

RESULTS AND DISCUSSION 

It has been found that the values of p(x) evaluated from Scholmilch or 
similar type of series are more accurate than those from asymptotic expan- 
sions, and therefore the following equations are employed in this work 

I. Scholmilch approximation [23] 

p(x)=5 l- 
[ 

a1 + 
(x + 1) (x+$x+2) - (x+1):3(x+3) 

+ (x+1)::(x+4) - 
a5 

(x+l)...(x+5) 
+ . . . 1 (13) 

Where a, = b, a2= b2, a3 = b3 + 6, a4 = b4 + 4b2 - b and as = b5 + lob3 
+ 5b2 + 8b. 
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2. Semiconvergent series 

[ 

b b(b+l) 
p(x)=5 1-x+ 

_ b(b+l)(b+2) 
x2 

X3 

+ b(b+l)...(b+3) _ 

x4 

b(b+l)...(b+4) + 
x5 ... 

I 

3. New series upprox~mation f3.51 

p(X)=5 

b(b2 - 1) 

‘- (x+:+1) - (b-l)(x+l)(x+2)(x+b+l) 

b2(b3 - 1) 

+ (b-l)(x+l)...(x+3)(x+b+2) 

b3(b4 - 1) 

- (b-l)(x+l)...(x+4)(x+b+3) 

b4( b5 - 1) 

+ (b-l)(x+l)...(x+5)(x+b+4) --*‘. 1 
4. Three term approximation [35J 

‘(x)=5 

(b2+ 1) 

‘-- (x+:+1) - (x+l)(x+2)(x+b+l) 1 

(14) 

(16) 

For the computation of p(x), expansions up to six terms were used in 
eqns. (13), (14) and (15). However, in eqn. (16) only three terms are taken 
because the third term represents the approximate sum of all the terms 
beyond the second in eqn. (15). 

In order to prepare the complete set of numerical tables for p(x), x = 15 
(5) 60 and b = - 2 (0.5) + 4 were chosen. By introducing the numerical 
values of x and b in eqns. (13), (14), (15) and (16), values of -In p(x) were 
computed. A total of 120 sets of values thus obtained from the four 
equations are given in Tables 1, 2, 3 and 4 respectively. From these tables, it 
can be seen that the -In p(x) values for all the four approximations are 
very close. 

Dependence of - In p(x) on b 

Using the above tabulated values of -In p(x), linear plots were drawn 
for -1n p(x) vs. b for different values of x. This linear relation can be 
represented as 

-In p(x) =M+Nb (17) 
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TABLE 5 

Curve fit constants for -In p(x) vs. b plots for eqn. (13) 

X 

15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

Slope (N) 

2.767891 
3.041675 
3.256187 
3.432618 
3.582490 
3.712770 
3.827998 
3.931299 
4.024912 
4.110502 

Intercept (M) 

14.995273 
19.997173 
24.998121 
29.998661 
34.998997 
39.999222 
44.999938 
49.999465 
54.999576 
59.999641 

r 

0.99999956 
0.99999987 
0.99999994 
0.99999997 
0.99999998 
0.99999999 
0.99999999 
0.99999999 
1 .oooooooo 
1 .oooooooo 

A total of 40 sets of values of slope, intercept and correlation coefficients 
were calculated and these values are given in Tables 5-8. From these tables 
it can be seen that the value of the slope increases with increase in X. 
Similarly, intercepts also show the same increasing trend with increasing X. 
Another interesting observation is that the intercepts obtained from the 
curve fits tend to the theoretical values of x as the value of x increases. The 
correlation coefficients also show the same trend. In all the cases studied the 
correlation coefficients are almost unity, and therefore the four approxima- 
tions are equally applicable for the computation of p(x) when x > 15. 

Relation between slopes and x 

Using the computed values of slope, several curve fits were tried with x. It 
was found that the slope vs. In x plot is linear. The relation can be 

TABLE 6 

Curve fit constants for -In p(x) vs. b plots for eqn. (14) 

X Slope (N) Intercept (M) r 

15 2.768340 14.995461 0.99999966 
20 3.041750 19.997257 0.99999988 
25 3.256209 24.998129 0.99999995 
30 3.432626 29.998663 0.99999997 
35 3.582492 34.998998 0.99999998 
40 3.712777 39.999222 0.99999999 
45 3.828000 44.999379 0.99999999 
50 3.931299 49.999492 0.99999999 
55 4.024912 54.999576 1 .oooooooo 
60 4.110502 59.999642 1 .oooooooo 
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TABLE 7 

Curve fit constants for -In p(x) vs. b plots for eqn. (15) 

X Slope (N) Intercept (M) r 

15 2.767717 14.995155 0.99999960 
20 3.041627 19.997136 0.99999987 
25 3.256168 24.998106 0.99999994 
30 3.432609 29.998653 0.99999997 
35 3.582484 34.998993 0.99999999 
40 3.712767 39.999219 0.99999999 
45 3.827996 44.999376 0.99999999 
50 3.931298 49.999490 0.99999999 
55 4.024911 54.999576 0.99999999 
60 4.110501 59.999641 0.99999999 

TABLE 8 

Curve fit constants for -In p(x) vs. b plots for eqn. (16) 

X Slope (N) Intercept (M) 

15 2.767898 14.995518 
20 3.041663 19.997287 
25 3.256175 24.998182 
30 3.432608 29.998697 
35 3.582481 34.999021 
40 3.712763 39.999237 
45 3.827993 44.999389 
50 3.931295 49.999500 
55 4.024909 54.999582 
60 4.110499 59.999647 

r 

0.99999959 
0.99999987 
0.99999994 
0.99999997 
0.99999998 
0.99999999 
0.99999999 
0.99999999 
0.99999999 
0.99999999 

represented as 

slope (N) =N, +A$ In x (18) 

The values of IV,, IV2 and the correlation coefficients for the four approxi- 
mations are given in Table 9. On substituting the numerical values in eqn. 

TABLE 9 

Results of slope vs. In x plots 

Scholmilch Semiconvergent New series Three term 

Slope N, 0.969609 0.969383 0.969703 0.969609 
Intercept N, 0.137537 0.138402 0.137178 0.137533 
r 0.9999840 0.9999829 0.9999844 0.9999840 
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TABLE 10 

Results of intercept vs. x plots 

Slope M, 
Intercept M, 
r 

Scholmilch Semiconvergent 

1.000079 1.000077 

- 0.004414 - 0.004303 

1 .oooooooo 1 .ooooooo 

New series 

1.000081 
- 0.004501 

0.999999998 

Three term 

1.000075 
- 0.004217 

0.999999997 

(18), the following equations were obtained for the data from the four 
approximations 

Scholmilch (N) = 0.137537 + 0.9696091n x (19) 

Semiconvergent (N) = 0.138402 + 0.9693831n x (20) 

New series (N) = 0.137178 + 0.9697031n x (21) 

Three term (N) = 0.137533 + 0.9696091n x (22) 

Relation between intercepts and x 

A similar examination of the data showed that the intercept, M varies 
linearly with x. The relation can be represented as 

Intercept (M) = M, + M,x (23) 

The numerical values of slope M2 and intercept Mi along with the correla- 
tion coefficients are given in Table 10. Substituting the numerical values of 
Mi and M2, we get the following equations for the four approximations 

Scholmilch (M) = - 0.004414 + 1.000079x (24) 

Semiconvergent (M) = - 0.004303 + 1.000077x (25) 

New series (M) = - 0.004501 + 1.000081x (26) 

Three term (M) = - 0.004217 + 1.000075x (27) 

For all the plots, the correlation coefficients are very high, indicating the 
goodness of the fits. 

Equations relating slopes and intercepts 

Substituting eqns. (18) and (23) in eqn. (17), we get the relation showing 
the total dependence of -In p(x) and x. The final form of the equation can 
be represented as 

-In p(x) = Mi + M2x + (N, + N,ln x)b (28) 

Substituting the numerical values of slopes M2 and N, and intercepts Mi 
and Ni in eqn. (28) we get the following equations for -In p(x) 
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Seholmiich 

-In p(x) = - 0.004414 + 1.000079x + (0.137537 + 0.9696091n x)b . 

Semiconvergent 

-1n p(x) = - 0.004303 + 1.000077x + (0.138402 + 0.9693831n x) b . 

New series 

-In p(x) = -0.004501 + 1.000081x + (0.137178 + 0.9697031n x)b. 

Three term 

-In P(X) = - 0.004217 + 1.000075x + (0.137533 + 0.9687091n x)b . 

(29) 

(30) 

(31) 

(32) 

When b = 2, eqns. (29)~(32) become the Arrhenius temperature integral. 
The validity of these equations was tested by comparing the -In p(x) 

values calculated using eqns. (29)-(32) with the theoretical values of 
- In p(x). The percentage deviations from the theoretical values (for b = 2) 
are 5.670 X lo-*, 5.528 X lo-*, 5.796 X lo-* and 5.629 X 10e2, respec- 
tively, for eqns. (29), (30), (31) and (32), when x = 15. Similarly, the 
percentage deviation from the theoretical values are 8.424 X 10w3, 5.013 X 

10s3, 8.301 X low3 and 8.496 X 10w3, respectively, for eqns. (29), (30), (31) 
and (32), when x = 60. Thus, the theoretical as well as the computed values 
of the temperature integrals are very close for the four approximations 
employed in this study. 

CONCLUSIONS 

In the present study, the temperature integrals evaluated with non-integer 
values of b have been compared for different series appro~mations. Since E 
and l/T are separate linear functions of In pf x), the combined dependence 
of In p(x) on x (x = E/RT) for different values of b has been established 
and equations are presented to relate -In p(x) accurately to the value of b, 
using four series approximations. 

Most of the equations derived are only for the temperature integral, where 
b = 2. In this study it is observed that the general series solutions and the 
Scholmilch series are equally applicable in the evaluation of p(x) functions 
for values of b ranging from -2 to +4. The values of p(x) computed from 
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the closed form three term approximation, derived from the general series 
solution, also show good agreement with those from the Scholmilch or series 
approximations. 

An important aspect of this study is that - ln p(x) can be rapidly 
determined for any value of x and b by simple substitution in any of the 
eqns. (29)-(32) or from the tables. Thus, it is possible to obtain the values of 
the general temperature integrals at any set of conditions for the analysis of 
non-isothermal kinetic data. 
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