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ABSTRACT 

A deeper analysis and development of the ideas from the previous two articles [Urbanovici 
and Segal, Thermochim. Acta, 111 (1987) 335; 118 (1987) 651 is presented. Special emphasis 
is given to the classical change, or better, classical non-isothermal change (CNC), of some 
isothermal kinetic equations. We shall start from the isothermal differential kinetic equation 
dcu/d t = f( Cy)k( T)h( a, T) axiomatically accepted as postulated primary isothermal differen- 
tial kinetic equation (P-PIDKE). A critical examination of the correct and incorrect proce- 
dures to derive non-isothermal kinetic equations using CNC is presented. The particular 
isothermal differential kinetic equation da/d t = A f( a) e- E/RT will be considered as exam- 
ple. 

A new formulation of the model of the infinitesimal isothermal portions (MIIP), as well as 

discussions concerning the difference between non-isothermal kinetics with constant heating 
rate and non-isothermal kinetics with variable heating rates are presented. 

The article concludes with the necessity to use PIDKE or alternatively MIIP for deriving 

correct non-isothermal kinetic equations. 

INTRODUCTION 

As previously shown [1,2] non-isothermal kinetic analysis requires the 
investigation of the change of a property of the system under investigation 
with simultaneous change of the temperature. In the following we shall 
assume a uniform space distribution of temperature in all the subsystems of 
the system, whose temperatures could differ. Thus heat transfer between the 
subsystems, described by the Newton law could occur [3-71. The mass 
transfer phenomena will be considered as fast enough for the occurrence of 
the chemical reaction in the kinetic regime. 
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AGAIN ON THE FUNDAMENTAL PROBLEM OF NON-ISOTHERMAL KINETICS 

According to the fundamental problem of non-isothermal kinetics as 
mentioned in ref. 2, in order to derive non-isothermal kinetic equations we 
shall start from the following isothermal kinetic equation 

2 = f( cy)k( T)h( a, T) 

where h( (Y, T) is a function of the inseparable variables degree of conversion 
(Y, and temperature T. Equation (1) will be considered axiomatically as 
postulated primary isothermal differential kinetic equation (P-PIDKE). Its 
integral form is 

s a? da 

cy, f(a)h(a, T) 
= k(T)(t, - t1) T = const. 

or for (Y, = 0, t, = 0, (Ye = (Y, t, = t, a and t being current values 

J 
a da 

o f(a)h(a, T) 
= k(T)t T = const. 

(4 

In the following, we shall use eqn. (3) without important loss in generality 
for the results. 

From eqn. (3) it turns out that in principle 

(~=u(t, T) 

introducing relationship (4) in eqn. (1) one obtains 
(4) 

2 = f[u(t, T)]k(T)h[u(t, T), T] = v(t, T) 

The variables t and T in eqns. (l)-(5) are independent. We shall use these 
isothermal kinetic equations to derive non-isothermal kinetic equations 
through the classical non-isothermal change (CNC). The classical non-iso- 
thermal change of a differential or integral kinetic equation consists in the 
substitution of T with a function giving its change in time. The CNC will be 
applied to eqns. (l), (4) and (5). Equally the model of the infinitesimal 
isothermal portions (MIIP) will be applied considering eqn. (2). The non-iso- 
thermal kinetic equations will be derived for heating rates low enough to 
keep valid the Maxwell-Boltzmann energy distribution. The example of the 
well known particular form of eqn. (1) 

J!$ = Af( a) eeEIRT (6) 
with 

A = constant 

E = constant 

and generally [6,7,20] 

(7) 

(8) 

f(a) = (1 - a)nam lnj-& ’ 
[ 1 (9) 

will be used. 
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NEW ASPECTS CONCERNING MIIP 

MIIP is used for the mathematical treatment of the non-isothermal curves 
and implies the division of such curves into infinitesimal intervals which are 
supposed to be described by integral isothermal equations of the form (2) 
which can be directly derived from the differential equation (1). 

The division of the non-isothermal curve can be realised in two ways: (a) 
division of the t axis in equal infinitesimal intervals At, (b) division of the 

a (N) * axis in equal infinitesimal intervals Acu (N). A division of the T axis 
could be also performed, but this is not significant as T and t are dependent 
variables in non-isothermal conditions. 

A new variant of MIIP with respect to these given in our previous articles 
(1,2] consists in considering the temperature in relationships of the form (2) 
as corresponding to the middle of the infinitesimal interval. This allows the 
replacement of the sums s and S by a unique sum u (see Appendix 1). 

In some cases when the results obtained by applying MIIP cannot be 
changed into non-isothermal integral kinetic equations through summation, 
due to the inseparability of variables, we shall express them as non-isother- 
mal differential kinetic equations. As will be shown in the following, the use 
of MIIP based on the integral isothermal kinetic equation (2) is equivalent 
to the CNC of the isothermal differential kinetic equation (1). 

Accepting the idea according to which the non-isothermal kinetic equa- 
tions can be derived from the isothermal ones through CNC, one has to 
accept the equality between the values of the non-isothermal kinetic parame- 
ters and the isothermal ones. 

THE DIRECT PROBLEM (DP) AND INVERSE PROBLEM (IP) OF ISOTHERMAL 
KINETICS AND NON-ISOTHERMAL KINETICS 

Direct problem 

From known kinetic parameters [f(a), k(T) and h( (Y, T) or particularly n, 
A and E] to determine the a(t) and ai( t) curves for isothermal and 
non-isothermal conditions. For the non-isothermal case the heating pro- 
gramme should be known. 

Inverse problem 

From the experimentally known a(t), b(t) and T(t) non-isothermal 
curves to determine the kinetic parameters of the process. 

* (N) after a variable (usually a) or before a mathematical relationship means non-isother- 
mal; in the following this notation will be preferred instead of N as subscript. 
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This article deals mainly with the derivation through CNC of some 
non-isothermal kinetic equations as starting point for solving the DP. The 
finding of some non-isothermal equations for the DP will help us to find the 
solution of IP which requires the same equations. 

To solve the problems of non-isothermal kinetics one has to consider 
several possibilities for the variation of the temperature. 

THE TEMPERATURE OF THE SYSTEM IS GIVEN BY AN EXTERNAL PRO- 
GRAMME 

This is the most usual case in non-isothermal kinetics. Neglecting the 
thermal effects inside the system (actually inside the subsystem where the 
process being investigated occurs) one can consider that its temperature 
equals the programmed one. In such conditions 

$4, T) = 0 (10) 

or explicitly 

T= O(t) (11) 

t=dT) (12) 

The initial condition 

To = 0 (t=O) (13) 

is obvious. The heating rates &(t) and &(T) are given by [1,2] 

g = t?‘(t) =/3,(t) 

dT -= 
dt -$)-P,(T) 

For 

g = /? = const. 

(14) 

05) 

06) 
T= T,+pt (17) 

Relationships (16) and (17) are characteristic for linear non-isothermal 
kinetics. 

The CNC of eqn. (I) 

From eqn. (1) through CNC one obtains 

(NJ g = f(+[e(t)]h[c e(t)] 

or taking into account eqn. (15) 

(N) dcl= 
dT &f(“)k(T)hh T, 

2 

(18) 

(19) 
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Equations (18) and (19) are equivalent from the standpoint of the informa- 
tion they contain about the system, due to the dependence between t and T 

in non-isothermal kinetics. This is the reason that we will consider in the 
following only the change of (Y with time. Equations (18) and (19) cannot be 
directly integrated, thus to solve the DP one has to use numerical methods 
of integration. For the particular case of eqn. (6) one obtains 

which can be integrated as follows 

(N) J,ag = A~-EIRB”’ dt (21) 

We consider that eqns. (18)-(21) give a correct description of non-isother- 
mal processes. 

The use of MIIP 

MIIP (At) 
Through division of the non-isothermal curve a(t) into infinitesimal 

intervals corresponding to the above-mentioned division of the t axis, for 
the n-th interval 

(n-l)At+nAt 
2 )=B(vAt) 

and according to eqn. (2) 

CN) [:, f(a)h(a, B;+- 1 Af)) = kie( 2ni- l iAtlAt 

(22) 

(23) 

If 

h(cy, T) = 1 (24) 

by summing the n relationships of the form (23) (a0 = 0), and considering 
the limits for n + cc and At + 0 (see Appendix 1) 

(N) lim n At=t (25) 
n-+cc 
At-O 

(N) lim (Y, = (Y (26) 
n-cc 

(Y and t being current values, one obtains 

(NJ J ada 
0 fW 

= Jbk[B(t)]dt (27) 

i.e. the integral equation which can be obtained from the differential 
equation (18), taking into account eqn. (24). If relationship (24) is not valid, 



266 

it is not possible to obtain from eqn. (23) an integral equation (the variables 
cannot be separated), In such a case we shall bring relationship (23) to a 
differential form. 

Using the theorem given in Appendix 2, from eqn. (23) with At infinitesi- 
mal one obtains 

f 

=k( 8( FAt)) At 

where ( CX, - (~,_i) is an infinitesimal quantity too. Equation (29, for n + cc 
and At + 0, when 

(N) 
a, + an-1 

lim 2 = (Y (2% 
n-too 

N 
lim 211-l 

rl’cc 
2At=t 

Al-0 

(30) 

a and t being current values, leads after rearrangement to the non-isother- 
mal differential kinetic equation (18) obtained through CNC in the isother- 
mal kinetic differential equation (1). 

MIIP (Aa) 
As previously, in this case one has to divide the non-isothermal curve a(t) 

into small infinitesimal intervals. For the 

If relationship (24) is valid by summing the n 
(see Appendix l), and taking the limits when 

n-th interval 

(32) 

=k(8(tn+;n-1))(t,-tn_,) 

WI 

(NJ 

(Y and t 

lim n Aa = (Y 
n-+oo 
Aa- 

lim t, = t 
,I -f M 

(33) 

relationships of the form (33) 

(34) 

(39 

being current values, one obtains relationship (27). For the general 
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case corresponding to h( (Y, T) + 1, using in eqn. (33) the theorem from 
Appendix 2, it turns out that 

(N) 

(36) 

Considering the limits for n + cc and Aa + 0 

(N) 
tn + tn-1 

lim 2 = t (37) 
n-m 

(N) 
lim 2n-1 

2A~=a (38) 
n*oo 
Aa+O 

(NJ lim 
Aa da 

n+m t, - t,_, = dt 
Aa- 

(39) 

a and t being current values, eqn. (36) after rearrangement leads to eqn. 

(18). 
From the analysed cases one can conclude that the CNC is equivalent to 

the use of MIIP. 

CNC of eqn. (5) 

This procedure is incorrect, as for deriving eqn. (5) the non-isothermal 
nature of the system was not taken into account. 

Applying the CNC to eqn. (5) one gets 

N g = f(u[t, e(t)])k[0(t)]h(u[t, e(t)], e(t)) =v]t, e(t)] (40) 

It is easy to see that eqn. (40) is not equivalent to eqn. (18) considered by 
us as correct. Concerning the physical meaning of the CNC of eqn. (5) as 
shown in Appendix 3, using this equation one can draw a surface Q1, 
representing the isothermal curves da/d t = v( t, T) for various temperatures 
(in this case T and t are independent variables). The shift on the surface Q2, 
when T and t are related by eqn. (11) is equivalent to the CNC of 
relationship (5). Thus one can conclude that the shift on a surface Q2, 
obtained from several isothermal curves (da/dt)( t) at various temperatures 
(shift which corresponds to a relationship of the form (11) between t and T) 

is not a true non-isothermal shift. 
Equation (5) can be integrated in isothermal conditions as follows 

[*da = l?(t, T) dt T= const. (41) 

which for isothermal conditions is equivalent to eqn. (2). 
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When applying MIIP using eqn. (41), through very simple calculations 
one obtains the non-valid non-isothermal differential kinetic equation (40). 
One can conclude the MIIP cannot be applied to any isothermal integral 
kinetic equation but to the isothermal kinetic equation derived directly from 
eqn. (l), i.e. to an equation of the form (2). Although eqns. (1) and (5) are 
equivalent in isothermal conditions, they are not equivalent with respect to 
the CNC, as for deriving eqn. (5) integrations in isothermal conditions were 
carried out. 

The only common and insignificant case when the CNC of eqn. (5) could 
be equivalent to the CNC of eqn. (1) can be realised for 

f(a)h(cY, T) = 1 (42) 

and consequently 

g=k(T) 

For the particular case of eqn. (6) through integration one obtains 

J 
a dcr - =A e-E/R=t 

0 f(a) 
T = const. 

(43) 

(44) 

From eqn. (44) in principle 

1y = p( A epEIRTt) 

Equation (6) with (Y given by eqn. (45) takes the form 

(45) 

By applying the CNC in eqn. (46) one obtains 

(N) g = Af( p(A e-E/R@(l)t)) e-E/R@(t) 

which is not equivalent to eqn. (20). The integral form of eqn. (47) is 

(N) A e-VW’+)) e-WRW’ dt 

(46) 

(47) 

which is not equivalent to eqn. (21). 
The material presented in this paragraph imposes the following conclu- 

sions: (1) the CNC of a kinetic differential equation of the form (5) obtained 
from eqn. (1) is not valid; (2) the shift on a surface Q2, (see Appendix 3) 
obtained from various isothermal curves &(t) at various temperatures does 
not lead to a true non-isothermal curve; (3) in order to apply MIIP one has 
to start from isothermal integral equations of the form (2) derived directly 
from eqn. (1) and not from isothermal integral equations of the form (41). 
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CNC of eqns. (3) or (4) 

The CNC of eqn. (3) leads to 

cN) la @)h;f fj( t)] = k[e(t)l t > (49) 

In order to ‘integrate the left member of eqn. (49), 8(t) is considered 
formally as a constant. 

From eqn. (4) through CNC one obtains 

(N) (Y = u[ t, e(t)] (50) 

It is known that eqn. (50) is the solution of eqn. (49). In the following we 
will demonstrate that these CNC are incorrect. In order to do that let us 
consider a function w( (Y, T) such that 

dwb, 0 1 

da: = f(a)h(a, T) 
T = const. 

i.e. isothermal conditions. 
By introducing eqn. (51) in eqn. (3) one gets 

J 
Qdw(ar, T) 

da 
dcu = k(T)t T = const. 

0 
(52) 

or performing the integration 

w((Y, T) - ~(0, T) = k(T)t (53) 

Relationship (4) is a solution of eqn. (53). On the other hand one can see 
that taking into account eqn. (51), actually eqn. (53) is another form of eqn. 
(3). Thus the CNC applied to eqns. (3) and (4) is equivalent to the CNC 
applied to eqn. (53) i.e. 

(N) w[a, e(t)] - w[O, e(t)] = k[W)]t (54) 

To demonstrate the incorrectness of relationship (54) one has to take its 
derivative with respect to t 

(N) 
1 e + aw[a, e(t)] de(t) aw[O, e(t)] de(t) -- 

f(a)h[a, d(t)] dt se(t) dt ae(t> dt 

Expressing da/dt from eqn. (55) one obtains 

(N) g = f(+[a> wl k[Wl 
Wt) wwl t + 7 

i d@(t) 

- awb, wl + adO, wl 
w> w> )I (56) 



270 

It is obvious that, eqn. (56) differs from non-isothermal differential kinetic 
equation (18) which is considered as valid. 

Concerning the physical meaning of the CNC leading the equations like 
(49) (50) or (54) one has to notice that a shift on a surface Q2, (drawn from 
various isothermal curves (y(t) for various temperatures) for T and t related 
by eqn. (11) is equivalent to the CNC. The CNC of eqn. (44) leads to 

(N) l”-$$ =A e-E/R@(t)t (57) 

From eqn. (56) by particularization, or taking the derivative of eqn (57) with 
respect to t, one obtains 

(NJ 2 =Af(a) e-W’RW 1 + E. _ de(t) t 
RO'(t) dt 1 (58) 

which is not equivalent to eqn. (20) and thus incorrect. For a linear heating 
programme taking into account eqn. (17), eqn. (58) becomes 

2 =Af(a) e -E/R(T,+Pr) I + E 

R(T, + Pt) 
2Pt 

I 
(59) 

inadequately considered as valid for non-isothermal kinetics [12-15,201. 
Finally concerning the CNC of eqns. (3) or (4) one can conclude that: (1) 

the CNC of eqns. (3) or (4) does not lead to correct non-isothermal integral 
kinetic equations; (2) the shift on a surface 3, obtained from various 
isothermal curves a(t) and various temperatures does not lead to a true 
non-isothermal curve. 

On the existence of the total differential da = (C?CX/C? t),dt + (acu/JT),dT in 
non-isothermal kinetics 

The discussion on this subject has been initiated by McCallum and 
Tanner [ll] who suppose that in non-isothermal kinetics, relationship (60) 
and its total differential (61) are valid 

(N) a=u*(t, T) (60) 

N da=j$jTdt+($),dT (61) 

As shown in ref. 1 as well as in Appendix 3 of this paper, relationship (61) 
has no meaning, as in non-isothermal kinetics T and t are dependent 
variables. Thus eqn. (60) should be written as 

(N) (Y = u*[t, e(t)] (62) 

whose differential can be written according to relationship (29) from Ap- 
pendix 3 in the form 

ihl* 
da=at 

* de(t) 
dt+ “a”B -sdtdt 

where au*/&? does not imply t = constant. 

(63) 
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One has to mention the formal connection between the procedure pre- 
sented in the last section to derive non-isothermal kinetic equations and the 
acceptance of a equation of the form (61). Some authors calculated the 
partial derivative (au*/aT), starting from a relationship of the form (57). In 
this way they found that au/&9 equals (au*/aT),; thus from a relationship 
of the form (61) they derived the non-isothermal differential kinetic equation 
obtained by us in the previous section [12-151. 

Some problems concerning non-isothermal kinetics with constant heating rate 
and with variable heating rate 

For constant heating rate, eqn. (1) taking into account eqn. (17) leads to 

(N) $ = f(a)k& + ,&)h(a, To + Pt) (64) 

which is a particular form of eqn. (18). In principle through integration of 
eqn. (64) one obtains 

(N a = P,(C P) (65) 

which introduced in eqn. (64) gives 

(N) $f =P& P> 

In relationships (65) and (66), t and fi can be considered as independent 
variables so that various curves a(t) and h(t) for various constant heating 
rates pi, &, . . . can be considered; thus the surfaces Q, and Q2, correspond- 
ing to eqns. (65) and (66) can be drawn. 

Also, in principle from eqn (18) we could derive for the general case (11) 

(N) ci = P&, &(t)l (67) 

or introducing this result in eqn. (18) 

(N) 2 =P& &(t>] 

Through differentiation from eqns. (65) and (67) one obtains 

N da=($i)e.dt+(%)ldb 

W) da=($dt+(g)(w)dt 

Equation (70) can be divided by dt, while in eqn. (69) such an operation is 
not possible as p and t are independent variables (see Appendix 3). 

Let us suppose that we operate changes which consist in the substitution 
of p with pi(t) in eqns. (65) and (66). These changes correspond to shifts on 



212 

the surfaces & and Q2, when ,B and t are connected through the rela- 
tionship. 

Thus through the change of p with PI(t) in eqns. (65) and (66) one gets 

(N) a = P* [f, /WI (74 

(N) g = Pz[t, &(t)l O-3) 

Without getting into detailed calculations we have to mention that cy given 
by eqn. (72) is not a solution of the differential equation (18), and da/dt 
given by eqn. (73) is not equivalent to eqn. (18), i.e. 

(N) pl[t, ,4(t)] +P$, p,(t)] 

(N) pz[t, p,(t)] #P,[t, p,(t)] 

As an application we will consider eqn. (21) for T given by eqn. (17) 

Considering thus the change p + ,f3r( t) we could obtain 

(N) J,“$ = ~~'e-"/Nr;'+P,W~l dt 

(74) 

(75) 

(76) 

(77) 

which is not equivalent to eqn. (21). 
Formally the integration of the right member of eqn. (77) is performed 

considering that &(t) = constant. The conclusions of this section are: (1) it 
is not possible to obtain correct non-isothermal kinetic equations with 
variable heating rates from non-isothermal equations for constant heating 
rates through the change fi + &(t); (2) the shifts on the surfaces !J2, and Q, 
obtained from curves a(t) and k(t) for various constant heating rates does 
not lead to a true non-isothermal curve with variable heating rates. 

Let us now consider Gorbachev’s article [16] in which he tries to demon- 
strate the existence of a difference between non-isothermal kinetics with 
constant heating rate and non-isothermal kinetics with variable heating rate. 
His mistake consists in transforming a relationship of the form (69) (rela- 
tionship (2) in [16]) in an improper way (dividing by dt), i.e. in transforming 
a relationship with p and t independent into an incorrect relationship with 
p and t dependent. Thus in principle there is no difference between the two 
kinds of non-isothermal kinetics; the general equation for treating non-iso- 
thermal phenomena is eqn. (18) with its particular form eqn. (64). 
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AUTONOMOUS NON-ISOTHERMAL SYSTEMS ADIABATICALLY ISOLATED 

We call these systems autonomous non-isothermal as their non-isothermal 
character is due only to the heat evolved (exo) or absorbed (endo) in the 
process investigated. In such cases the temperature of the system depends on 
the conversion, i.e. 

T= q(a) (78) 

with the obvious condition 

T,=q((r=O) (7% 

The form of q(a) depends on many factors such as reaction enthalpy, heat 
capacities of reactants and products, etc. The most usual particular case of 
relationship (78) is 

T= To+ q,,” q0 = const. (80) 

As will be demonstrated in the following by using MIIP in a more general 
case, the CNC can be applied to such systems too. Thus eqn. (1) with the 
CNC (78) becomes 

(N % = fW+da)lhb~ skdl (81) 

Through variable separation in eqn. (81) followed by integration one obtains 

(N) /oaf(a)k[q(a;llah[a q(a)] = t 7 

In the particular case of eqn. (6) the CNC gives 

(N 

CN) 

i!g = Aqa) ,-ww4 

ia f(a) e:,Rq(a) = At 

A surface Q2, can be drawn from the points T, a and da/dt given by eqn. 
(1). The surface can be obtained from various isotherms (da/dt)( LY) at 
various temperatures. On the surface at, a shift with T and (Y connected 

(82) 

(83) 

(84) 

through eqn. (78) is equivalent to CNC of eqn. (l), i.e. to eqn. (81). For a 
given process there is only one true way because there is only one function 

q(a). 

MIXED NON-ISOTHERMAL SYSTEMS 

In such systems, temperature changes due both to an external programme 
(usually heating) and to the thermal effect of the process being is investi- 
gated. 
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Let us suppose that no supplementary heat changes occur between the 
subsystem in which the process is being investigated and the heating 
subsystem. In such conditions 

T= T, + 4(t) + q1W (85) 
where B,(t) is the variation due to the thermal change with the heating 
subsystem; q,(a) is the variation due to the thermal effect of the process 
being investigated. 

One has to consider two limiting cases 

e,(t) = 0; To + qi(a) = q((u) 

qi(a) = 0; To + f?,(t) = O(t) 
(86) 

(87) 
To derive the correct non-isothermal differential kinetic equations one has 
to apply the CNC and MIIP in eqn. (1) using eqn. (85). 

The CNC leads to 

(N) g = fWk[T, + r%(t) + q*Wlh[% T, + 40) + sd41 (88) 
The differential equation (88) cannot be directly integrated due to the 

inseparability of (Y and t, but numeric methods are available for integration. 
Application of MIIP lead us to the following results: 

MIIP (At) 

For the n-th infinitesimal interval 

(NJ s da 

,“, f(cr)h(a, T,,) = k(T,l) At (89) 

where 

Using the theorem from Appendix 2, from eqn. (89) one obtains 

N 
an - %-I 

= k(T,,) At 

f 
(91) 

Relationship (91) for n --) cc and At + 0 leads after rearrangement to 
eqn. (88). 

MIIP (Aa) 

For the n-th infinitesimal interval 

(NJ J 
RAlT 

(n-l)Aa f(4+ T,,) = k(T,,k - b-1) 

q,= To+Sl( ‘~+;‘-id;+ql[~A~] 

(92) 

(93) 



From eqn. (92) one obtains (see Appendix 2) 

= k(T,,k - ~1) 
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For n -+ IX and At -+ 0 eqn. (94) becomes eqn (88). 
In these cases too, the use of MIIP leads to the same results as the use of 

CNC. Without going into details we mention that in these cases too the 
CNC of relationships (4) and (5) are not valid. Thus the equations 

(N) a = u[ t, To + e,(t) + qi(a)] (95) 

(N) g=+, T,+4(t)+q,(d] 

are incorrect. 
The CNC of eqn. (6) leads to 

(NJ 2 =Af(cy) e -E/R[T,+h(r)+q,(a)l (97) 

MIXED SYSTEMS WITH HEAT TRANSFER, ACCORDING TO THE NEWTON LAW, 

BETWEEN SUBSYSTEMS 

In this case the temperature of the subsystem where the investigated 
non-isothermal process occurs is given by eqn. (85) to which a term T,, due 
to the heat transfer between the heating and the process subsystems is 
added. This heat transfer will be considered as described by the Newton law 
[3-71. Thus 

T= To + e,(t) + qk> - T,, (98) 

(99) 

where K stands for the thermal transfer coefficient between the heat 
subsystem and the active subsystem, and C, for the heat capacity of the 
active subsystem, considered as constant [5-71. 

Applying the CNC from eqns. (1) and (98) one obtains 

x hh T, + e,(t) + sky) - T,,) W) 
In this case the system is described by two differential equations (99) and 

(100). 
By applying the MIIP one obtains successively 
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MIIP (At) 

For the n-th interval, 

From eqn. (lOl), taking into account the theorem given in Appendix 2, it 
turns out that 

At the limit when,n -+ co, At + 0 

lim 
T,,, + Ln-1 = 

n-rm 2 
T 

tr 

and relationship (103) becomes eqn. (100). 

MIIP (Aa) 

003) 

(104) 

W) 

From eqn. (104) (see Appendix 2) one obtains 

(N 
A(Y 

f 2n-1 

i 

A h 2n-1 
= kUL)(L - L-J 006) 

___ a’ 
2 ii 

2Aa, L 
i 

which at the limit becomes eqn. (100); thus in this case the CNC is 
equivalent to MIIP too. 

One has to notice that in this case too the CNC of relationships (4) and 
(5) taking into account eqn. (98) is not a correct procedure. 

The problems concerning a more detailed analysis of the heat transfer will 
be considered in a following paper. 

SOME GENERALISATIONS 

A more general case than that described by eqn. (98) corresponds to a 
heat transfer between the active subsystem and m subsystems; thus 

m 

T= T, + e,(t) + sb) - c (L), = T: 
I=1 

(107) 



where Tr* means the temperature of the active subsystem. The CNC can be 

operated in eqn. (1) taking into account eqn. (107) 

WI 2 = f( cu)k( T;)h( a, 7’;) 
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008) 

For a subsystem where Y chemical and physical processes described by the 
following system of isothermal differential equations 

d5 
__ =+X1, (Y* )...) aj )...) (Y,, T) 
dt 

(j= 1,2,..., r) (109) 

occur, the temperature is given by 

T=T,+8,(t)+ iqj(aj)+CT,,=T: 
j=l 

(110) 

where C>=iq j( aj) is the temperature variation due to the internal heat 
evolved and CT,, is the temperature variation due to heat transfers described 
by the Newton law. 

Accepting the Y isothermal differential kinetic equations as P-PIDKE one 
can apply the CNC to them, thus obtaining 

(N) %=&a, ,..., (Y ,,..., (Y,, T;) (III) 

The system is described by j equations of the form (111) and the 
differential equations corresponding to the heat transfers [generalised form 
of equation (99)]. The detailed calculations will be given in a subsequent 
paper. 

THE INVERSE PROBLEM OF NON-ISOTHERMAL KINETICS 

As shown, the inverse problem of non-isothermal kinetics consists in the 
evaluation of the kinetic parameters from experimentally determined values 
of (Y, T and t. 

For the temporal variation of the temperature one can always find an 
analytical dependence of the form 

(N) T=X(t) (112) 

Relationship (112) does not take into account the factors which determine 
the non-isothermal character of the process. From the experimental data we 
find 

(N) (Y = e,(t) (113) 

or 

(N) t = e2(a) (114) 
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From eqn. (113) taking the derivative one obtains 

(N) g=e;(t)=e,(r) (115) 

Concerning the applicability of MIIP for the IP, see ref. 2. In the following 
we will show that using relationships (112)-(115) we can obtain differential 
and integral equations which can be used in the evaluation of the kinetic 
parameters. 

By working relationship (1) we get 

N g = e,(t) = f(a)k[X(t)]h[cr, h(t)] (116) 
which can be used in the differential methods for the evaluation of the 
kinetic parameters. 

In order to integrate eqn. (116) one can distinguish two possibilities (1) 
the substitution of (Y given by eqn. (113) in h[cy, A(t)] which leads to 

(2) The substitution of t given by eqn. (114) in h[a, A(t)] giving 

(N) J,” f(,)h(olPl[e,(a)l) = /ork[‘(‘)’ dt 018) 

Equations (117) and (118) can be used in integral methods for the evaluation 
of the kinetic parameters. 

CONCLUSIONS 

1. 

2. 
3. 

4. 

5. 

The CNC in eqn. (1) (which is equivalent to the use of MIIP) is a correct 
procedure. 
The CNC in eqns. (4) or (5) is not a correct procedure. 
The shifts on surfaces obtained from isothermal curves a(t), ci( t) for 
various temperatures are not true shifts. 
Non-isothermal kinetics with variable heating rates cannot be derived 
from non-isothermal kinetics with constant heating rates through a sim- 
ple change p + pi(t). 
The CNC can even be applied to more complex systems than those 
described by eqn. (109) if the equations describing the system are 
accepted as P-PIDKE. 

APPENDIX 1. RIEMANN INTEGRABLE FUNCTIONS [ 17,181 

Let us consider the positive continuous function f(x) limited in the closed 
interval [a, b]. Let us equally consider a division (d) of the interval [a, 61 

(4 a = x0 < x1 < . . . -c x, -=c xi+1 . . . -=z x, = b (Al) 
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The summations of the magnitudes 

mj = inf f(x) 

x;<x<xi+r i=O,l ,...,n-1 

M, = sup f(x) 

xi < x < xi+r i=O,l,...,n-1 

(-42) 

(A3) 

( xi + xi+l 
gi = f 

2 1 
i=O,l,...,n-1 (A4 

leads to 
n-1 

s= C m,(xi+* -xi) (~45) 
i=O 

n-1 

s= c Mi(x;+l -x;) (W 
r=O 

n-l 

(J= c dxI+l-xJ (0 
i=O 

where s and S are the Darboux sums. For n + cc and ( xi+r - x,) -+ 0 we 
have 

lim s = lim S = lim u = I 
n+oo n-+oo Il’M 

where I is the integral of the function f(x) in the closed interval [a, b] 

I= 
J 

‘f(x) dx 
c1 

The function f(x) is called Riemann integrable. 

648) 

APPENDIX 2. THE THEOREM OF THE AVERAGE VALUE FOR AN INFINITESI- 
MAL INTERVAL OF INTEGRATION 

The theorem of the average values from mathematical analysis can be 
formulated as follows: if a continuous function does not change its sign in 
the closed interval [a, b], there is a point such that [l&19] 

J 
‘f(x) dx = (b - a)f(E) 649) 

EL (a, b) (AlO) 

One can easily check that if f(x) is a linear function 

f(x) = mx + n (All) 
then 

a+b 
<=,. 6412) 
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z=p(x,y) 
5-L 

M- ;r Y 

“/ 
C 

Fig. Al. The surface D in three-dimensional space. 

If the difference between b and a is infinitesimal, i.e. 

b=a+Aa kw 
then in the closed infinitesimal interval [a, b], f(x) can be considered as 
linear, thus 

/‘f(x) dx = (b - a)f( 
a 

F) =Aaf(a+F) ( fw 

APPENDIX 3. SHIFTS ON THREE-DIMENSIONAL SURFACES 

Let us consider the function z of two independent variables x and y 

z = P(X, y> (Al5) 

The three-dimensional diagram of the points (x, y, z) in a system of 
orthogonal axes leads to the surface !4 (Fig. Al) with two degrees of 
freedom corresponding to the two independent variables x and y. If p( x, y) 
is a continuous function which fulfils the Schwartz theorem [17], we have 

a2Z t12Z 
-=- 

ax ay ay ax 

In this case the differential of z 

(A 16) 

is a total exact differential. 
Let us suppose that x and y are connected through a relationship of the 

form 

r(x, Y) = 0 6418) 

In this case x and y become dependent variables, and from eqn. (A18) one 
can derive the explicit forms for y and x 

Y = r1(x) (A19) 

x=r,(y) (A20) 
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In the plane XOY curve C corresponds to the equivalent relationships 
(A18), (A19) or (A20). The points with coordinates x, y, z 

I 

x=x 

y: y=r,(x) 

z = p[x, i-i(x)] 
(A21 > 

i 

x = r2W 
y: Y=Y 

z = P[Y2(Y), Yl 

(A22) 

describe the three-dimensional curve y on the surface Q. Thus curve y is 
defined by relationships (A21) or (A22). 

Curves y and C have only one degree of freedom. The two-dimensional 
equivalent of y (in the planes XOZ or YOZ) can be obtained considering x 
or y as variable 

i 

x=x 

cl: z = p[x, rl(x)] 

‘,’ :Ii[r2(y),yi i 

The curves C, and C, 
are equivalent from the 

(A241 

given by the parametric equations (A23) and (A24) 
standpoint of the information contained in them 

and represent the two-dimensional equivalents of y. 
Let us analyse the differential and derivatives of z (with respect to x or y) 

when x and y are connected through eqn. (Al@. 
An erroneous procedure consists in dividing relationship (A17) by dx or 

dy, forgetting that x and y are independent variables. The division of (A17) 
by dx or dy leads to quantities dy/dx or dx/dy which cannot be 
interpreted. Thus from eqn. (A17) the following incorrect relationships can 
be derived 

(A23) 

w-5 > 

(A26) 

In these relationships, as far as x and y are connected through eqn. (A18) 
it means that x cannot be changed for-y = constant and vice versa. 

Actually if a relationship of the form (A18) is valid, one has to start from 
(AU). In this case z depends on one independent variable, either x or y. 

z(x) = P[X, r1(41 (A27) 

Z(Y) = Pk2(Y), Yl 
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In such conditions 

aP 
dz(x) = axdx + ar ___ 

8P dr,W dx 
1 dx 

ap dz(y) = -dy + ar ~ 
aY 

aP d%(Y) dY 
2 dy 

dzb) a~ ap dri(x) 
--=ax+ar- dx 1 dx 

d4Y) aP ap (3-2(Y) 

dy =F+ar, dy 

(A 29) 

WO) 

(AW 

(A34 

Although formally relationships (A25) and (A31) or (A26) and (A32) are 
equivalent from the standpoint of the results obtained, there is a difference 
between them from the standpoint of the physical meaning. In eqns. (A25) 
and (A26) one can change x at y = constant or y at x = constant whereas in 
(A31) for example the partial derivative Elp/ax does not mean r,(x) = 
constant, representing in fact a formal mathematical procedure. 

Relationships (A25) and (A26) can be correctly written in the following 

forms 

dz ap a~ dy --__++_ 
dx ax ay dx (A33) 

dz ap dx _-- 
dy- 

+dp 
ax dy ay (A 34) 

the connection between x and y being given by eqn. (A18). 
Relationships (A33) and (A34) are equivalent to (A31) and (A32) taking 

into account (A19) and (A20). 
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