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ABSTRACT 

Extrapolation methods for the correction of heat leaks in adiabatic calorimetry are 
discussed to obtain a good estimate of the ideal temperature increment AT for three cases of 
the origin of heat leaks; radiation, conduction, and both. A good estimate of AT in the 
radiation case is obtained by the extrapolation of the cooling curve to the half point of the 
heating duration to, with an error of the order of to’. A good estimate of AT in the 
conduction case is obtained by the extrapolation of the cooling curve to the half point of the 
heating duration and by dividing the resultant temperature increment by (1- H,/3H,,), 

where H, is the heat capacity of the sample and H, is that of the electrical leads and 
supporting materials. A simple physical meaning of the correction factor is given. 

INTRODUCTION 

Adiabatic (Nernst) calorimetry is known to give the highest accuracy in 
measuring the specific heat [l], and has the capacity for the absolute 
determination of the specific heat. A nearly adiabatic condition is realized at 
low temperatures, where superconducting leads with good electrical conduc- 
tivity and good thermal insulation can be used. The ideal adiabatic condi- 
tion can not, however, be satisfied at higher temperatures where heat leaks 
are enhanced because of increased thermal conductivity of electrical leads 
due to the breakdown of superconductivity and because of increased heat 
leaks due to radiation. The condition becomes unfavorable in high magnetic 
fields even at low temperatures, because superconductivity breaks down in 
the electrical leads. 

Two extrapolation methods for the ‘correction of heat leaks have been 
adopted to estimate the temperature increment AT in the ideal adiabatic 
condition. An empirical method is the extrapolation of the cooling curve to 
the half point of the heating duration r, (see Fig. 2 below) [l]. A theoretical 
method is the extrapolation of the cooling curve to the starting time of 
heating, on the basis of the simple model of heat leakage proportional to the 
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temperature difference between the sample and the external heat bath [2,3]. 
Another method is the “planimeter” method [4], that is the method using 
the area of the heating and cooling curve on the basis of the same heat leak 
model. The method is, however, somewhat cumbersome, and the extrapola- 
tion method seems sufficient when the heat leak is small. The planimeter 
method seems to be applied in a heat pulse method [5] beyond the condition 
originally imposed in ref. 4 where quasistationary heating is assumed. 

The empirical and theoretical extrapolation methods seem to contradict 
one another. The simple model for heat leakage in the latter method is not 
justified in general, because heat leaks through electrical leads (and support- 
ing materials) can not be neglected compared with those through radiation 
at relatively low temperatures. The partial differential equation for heat 
conduction has to be solved in the discussion of the extrapolation. 

Extrapolation meth.ods for the correction of heat leaks are discussed 
below in a simple one-dimensional model for the three cases of the origin of 
the heat leaks; radiation, conduction, and both. A good estimate of AT in 
the radiation case is shown to be obtained by the extrapolation of the 
cooling curve to the half point of heating duration, with an error of the 
order of t,f. A good estimate of AT in the conduction case is obtained by the 
extrapolation of the cooling curve after the intrinsic relaxation time of 
electrical leads to the half point of heating duration and by dividing the 
resultant temperature increment by a factor (1 - H,/3H,) where HO is the 
approximate heat capacity of the sample without correction, and Hi is that 
of the electrical leads and supporting materials. It is recommended that in 
the intermediate situation (with heat leaks through both radiation and 
conduction), the heat capacity of the electrical leads (and supporting materi- 
als) should be, if possible, negligible compared with that of the sample, and 
that the cooling curve should be extrapolated to the half point of t,. 

HEAT LEAK BY RADIATION 

The sample of temperature Tl with surface area S, is assumed to 
exchange heat with an external heat bath of temperature To by radiation as 
shown in Fig. 1. Heat flow is given by the following equation 

D&( T; - T,4) = 4aS,T,3( Tl - To) = AT (1) 

where u is the Stefan-Boltzmann constant and T is the temperature 
difference between the sample and the heat bath. The possible deviation 
from unity of emissivity of the sample and the external heat bath is 
neglected for simplicity. The deviation of the emissivity from unity can 
easily be included in the coefficient A. Heat exchange through rarefied gas 
takes the same functional form as eqn. (1) [6]. The heat capacity of the 
sample is H,,, and a constant power w is applied to the sample for the time 
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Fig. 1. Model of an adiabatic calorimeter with heat leak through radiation. 

duration between 0 and t,. The temperature difference T satisfies the 
following differential equation, on the assumption that the relaxation time 
within the sample is short enough compared with the relaxation time 
determined by eqn. (5) below to allow an approximation of homogeneity of 
the temperature in the sample 

H$=w[l- U(t-t,)] -AT 

where U(t) is the step function. The equation is expressed as 

dT’ 
I = $1 - U(t’- t;)] - T' 
dt 

with the use of dimensionless variables defined as 

t’ = t/7, t; = to/T, T’ = H,,T/( wt,$-,) 

where 

rr = H,,/A 

is the relaxation time of the sample cooling due to the radiation. 

(4) 

(5) 

The solution for t’ > t; satisfying the initial condition T’ (t’ = 0) = 0 is 
elementarily given by 

T’=f(t’) -f(t’- t;)U(t’- t;) (6) 

The Taylor expansion of eqn. (6) for t ’ a ti gives 

3tht’ + t;“) + . . . 

(7) 

(8) 

The extrapolation to th/2, therefore, gives a good estimate of the tempera- 
ture increment AT’ = 1 in the ideal adiabatic condition as shown in Fig. 2 
with an error of the order of ti2. 
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Fig. 2. Extrapolation method for the heat leak through radiation. Extrapolation to the half 
point of heating duration th gives a good estimate of ideal temperature increment. 

The heat leak term approximated by eqn. (1) is essentially the same as 
that of refs. 2 and 3, but the present conclusion contradicts them. The origin 
of the contradiction can be traced back to a one-sided approximation made 
for the exponential function in the refs. 2 and 3 in which the first order 
Taylor expansion is made for e’; m spite of no approximation being made 
for e-“. 

HEAT LEAK BY CONDUCTION 

Heat leak by conduction through electrical leads (and supporting materi- 
als) becomes important at relatively low temperatures, where the radiation 
discussed above is not important because the rate of radiation proportional 
to T4 is greatly diminished. Two extrapolation methods are discussed below 
on the basis of the nonstationary solution of the equation of heat conduc- 
tion, and the latter one is concluded to be better from a practical point of 
view. 

The model is shown in Fig. 3. HO is the heat capacity of the sample, w 
the heat power generated in the sample. K is the conductivity, c the specific 
heat, I the length, and SC the area of the cross section of the electrical lead, 
respectively. The partial differential equations of heat conduction expressed 
in dimensionless variables are 

~T”(x’, f”) a*T”(x’, t”) 
at’! = &12 (9) 

aT”(x’, t”) 

at” I 
x,=l=$[l-U(t”-t,‘)l -~[~]x,_, 
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Fig. 3. Model of an adiabatic calorimeter with heat leak through conduction. 

and the following initial and boundary conditions are imposed 

T”(X’, 0) = 0 

T”(0, ,“) = 0 

(11) 

(12) 

The dimensionless variables and constants are defined as 

t ” = t/ri (13) 

ty = to/T, (14) 

xI=x/l (15) 

k = clS,/H, (16) 

T” = Ho 
II T 
Wt, 7i 

07) 

where 

ri = d2/K 08) 

is the characteristic relaxation time of the electrical lead itself. The tempera- 
ture of the external heat bath is taken as the origin of the temperature 
without loss of generality. 

The operational calculus of Miksinski [7] (or isomorphic Laplace-trans- 
form calculus) gives the following solution for eqns. (9)-(12) 

{ T”(x’, 
q = _$ I- expj-4 sinh(fix’) 

se sinh(6) + kh cash(6) 
(19) 

The temperature of the sample (x’ = 1) is, therefore, given by 

(T”(1, t”)} = ${f(t”)} - {f(t”- t;>}U(t”- t:)] 

where 

(20) 

(21) 
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because the following general relation holds 

exP(-WfW) = (;)j+_ A)) 
O<t<X 

O<X<t (22) 

The inverse-transform of eqn. (21) is not found in published tables [8]. An 
approximate formula of eqn. (21) for small k may be obtained by the 
following expansion of eqn. (21) to the first order of k 

{ f(t”)} - 5 [ 1 - k$ coth(h)] 

= t 
,I 

{ )kj (23) 

The function in parentheses in the last line of eqn. (23) is inverse-trans- 
formed as 

coth(h) = 1 
S s I 1 + 2 exp(-26) 

1 

1 - exp( -2fi) 1 
= 

i 
I + 2 f cerf 

i 11 
A 
\/i” 

(24) 
n=l 

The second term in the last line is negligible for small t” compared with the 
first term because, for example, cerf(l/&%) = 0.0455. Equation (24) is, 
therefore, approximated for small t” as 

coy _ (1) = f (25) 

Equation (23) with this approximation yields 

{f(t”)} - {t”} -k$= {t”} -k(+t”“) 
7T 

(26) 

Equation (20) for t” > t; is, therefore, approximated for small t” and th 

by 

T”(1, t”) - -$ 
4 

t;-k- 
36 t 1 

r/1.5 _ (,,, _ tt,“]) 

The tangential line of the curve of eqn. (27) at t” = t: is given by 

T”(1, t”) = 1 - k- 3; K - l.5k3~-.+ (t”- t;) 
I7 r 0 

(27) 

(28) 

Extrapolation of eqn. (28) to t” = t:/3 gives T” = 1, which is the tempera- 
ture increment in the ideal adiabatic condition. Some examples of the 
present extrapolation method are illustrated in Fig. 4, where the heating and 
cooling curve is calculated from eqn. (20) with the numerical inverse-trans- 
form of eqn. (21) obtained by the FILT method [9], and the gradient of the 
curve at t” = tt is obtained numerically. 
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Fig. 4. Extrapolation method for the heat leak through conduction. Extrapolation to l/3 of 
heating duration t: of the initial slope of the cooling curve gives a good estimate of ideal 
temperature increment (dotted line). A more practical method is the extrapolation to tt/2 
(broken line) and division by (l- k/3) (arrow), where k is the heat capacity ratio of the 
supporting material to the sample. The latter method is only shown for a case of larger k to 
avoid confusion in the figure. 

The extrapolation method discussed above is rather impractical to be 
applied to the analysis of experiments, because the gradient of the cooling 
curve changes rapidly immediately after tt (as shown in Fig. 4) and such 
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rapid change may not be measured accurately because of the possible delay 
in the response of the thermometer. 

Another practical extrapolation method can be deduced from a different 
appro~mation applied to eqn. (21). Equation (21) is expanded to the second 
order of k as 

{f(t”)} - -$[I-k$ coth(&)+k’j+ coth(il;))2] 

Equation (29) is inverse-transfo~ed as 

{f(t”)} - (t”} -k{t”}.{l+2 E exp(-r2r,2i”)) 
n=l 

+k’(t”). 
[i 

1 + 2 f exp( --7T2m2t”) 
WI=1 

i 

cm 

1 + 2 C exp( -?r2n2t”) 
n=l 11 

(29) 

(30) 

where dot-product means the convolution of Miksinski [7] defined as 

(a(t)) . {bff)l = (j+(, - 7)h(+7/ (31) 

The convolution and summation in eqn. (30) can be easily performed, which 
gives the following approximate expression for t” > 0.5 

{ j-(t”)} - ((&k - &k’) + (1 - $k + &k’)t” 

+ (- ;k + $k2)tlr2 i- +k2trt3) (32) 

where exp( - r2n2t”) is neglected in the calculation of the coefficient of k2 
compared with unity for n > 1 and t” >, 0.5 because exp( -7~ X OS), for 
example, is 0.0072 and negligible. 

Some results of the approximate formula (32) are compared in Fig. 5 with 
the numerical results obtained by the FILT method [9] applied to the exact 
formula (21). The approximation is quite good for 0.5 5 t” ( 4 and k 5 0.1 
as shown in Fig. 5. The cooling curve after tc is, therefore, given in the 
present approximation from eqns. (20) and (32) as 

{ r”(1, t”)} - ((1 - 5 k+ &k2) + (-:k+ $k’)(t;-2t”) 

+&k’[l..‘- (t”-t;)‘]j (33) 

A linear extrapolation of eqn. (33) to t” = tr/2 gives T” (I, r”) = 1 - k/3, 
leaving only error terms of the order of k2. The cooling curve after about 
t6 + 0.5 should, therefore, be extrapolated to tt/2 and the resultant temper- 
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Fig. 5. Numerical result of the exact formula (21) for the heating process (solid curve) is well 
reproduced by the approximate formula (32) (broken curve). 

ature increment should be divided by a factor (1 - k/3), which gives a 
satisfactory estimate of the increment in the ideal adiabatic condition as 
shown in Fig. 4 and Table 

The physical origin of 
profile of the temperature 

TABLE 1 

1. 
the correction factor is rather simple. Spatial 
in the electrical lead is well approximated by a 

Corrected temperature increment obtained by the practical extrapolation to t;,‘/2 and 
division by (l- k/3) in the case of heat leak through conduction, where k is the heat 
capacity ratio of the supporting material to the sample. The extrapolation line is fitted to the 
cooling curve between rl + 0.5 and ty + 1.0 by the least-squares method (see broken line in 

Fig. 4) 

k 

0.05 
0.10 
0.15 

T”(1, I“ -+ tZ/2) 

l-k/3 

2; = 0.5 

0.9991 
0.9965 
0.9928 

tl’ = 1.0 

0.9985 
0.9944 
0.9885 
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quadratic function of x’ in the heating process in view of the result of the 
FILT calculation. It means that extra heat is necessary to raise the tempera- 
ture of the electrical lead, and the heat is approximated by one third of the 
heat capacity of the electrical lead multiplied by the temperature increment 
in the sample. It suggests that the correction factor may be applicable to 
physical situations where heating of the electrical lead is expected with the 
temperature of the end point constant, even if the initial condition is not 
strictly the same as the one discussed here. 

The correction parameter k = cl&/H, is small in common experiments 
and can be easily estimated from the specific heat, length, and cross section, 
of lead wires (and supporting materials), and from the approximate heat 
capacity of the sample obtained from the experiment itself without correc- 
tion. The correction is, of course, important in samples with small heat 
capacity. 

HEAT LEAKS BY RADIATION AND CONDUCTION, AND PRACTICAL CONSID- 
ERATIONS 

The solution in the general case with radiation and conduction is shown 
to be expressed in a similar formula in the Appendix, and leads to eqns. (7) 
and (A5) [or (21)] in the two limiting cases of 7r + 0 and 7r + co, respec- 
tively. The accuracy of the limiting formulas can be checked by comparison 
of the numerical result of eqn. (6) or the numerical FILT calculation [9] 
applied to eqn. (A5) with the FILT results of the exact expressions (Al) or 
(A4), respectively. The accuracy in the temperature at t’ = 1 calculated from 
the limiting formula is, for example, within 0.5% in a radiation dominant 
case where ~,/7, = 0.0012, r/~~ = 36, k = cl&/H, = 0.043, and th = 0.5. rC is 
defined by (A3). The case corresponds roughly to 30 s heating of a 0.5 cm 
cube copper sample with unit emissivity in a heat bath of T, = 570 K with 
six 00.1 x 10 cm lead wires of stainless steel. The accuracy in the tempera- 
ture at t “’ ( = t/7,) = 1 s i within 0.015% in a conduction-dominant case 
where T/T, = 56, 7i/~r = 0.00068, k = 0.038, and t,,,“’ = 0.05. The case corre- 
sponds roughly to 30 s heating of the same sample at T, = 4.2 K. In the 
analysis of experiments, ri is estimated from the known thermal conductiv- 
ity K and the specific heat c of electrical leads. rC is estimated from K, c and 
the heat capacity of the sample H,. 7r may be estimated from the excess 
cooling rate of the sample after several times of 7i as compared with the rate 
expected from TV. 

It is difficult to analyze the solution in the intermediate case by such 
approximate analytical methods as discussed above. The heat capacity of 
lead wires (and supporting materials) should, therefore, be made small 
enough in the intermediate case to be neglected when compared with that of 
the sample, and the cooling curve should be extrapolated to t,/2. 
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Another practical consideration is worth mentioning concerning the ini- 
tial condition of the radiation case. The extrapolation method is based on 
the initial condition T’ (t’ = 0) = 0, that is initial thermal equilibrium 
between the sample and the heat bath. The initial condition can be relaxed 
to allow intermittent heating in a heat bath of constant temperature, which 
is adopted in conventional experiments. We assume that first heating is 
initiated at tllnit (< 0), is interrupted at t:nit + th, and second heating is 
resumed again at t:tit + t;, and so on. The m-th heating is resumed at t’ = 0 
(= t:,it + mt;) and interrupted at t;. The temperature for th < t’ < t,’ can be 

approximated by 

T’-{f(t’)}-{/(t’-t;)}U(t’-t;)+~(a+bt’+ct’*) (34) 

where { f( t’)} ’ g IS iven by eqn. (7), because the temperature is shown to be 
expressed as 

T’=$ ~~((l-exp[-(t~-nt;-t:.i,)]}U(t~-_t;-t:,i,) 
n 

-{l-exp[-(t’- nt; - TV - t:*it)] } U( t’ - nt; - TV - t:,j,)) (35) 

The extrapolation of the tangential line at t’ = 0 to t’ = t&l2 gives a/t; + 

b/2, and the extrapolation of the tangential line at t’ = th to t’ = tA/2 gives 
1 + a/t; + b/2 to the order of th. The ideal temperature increment AT’ = 1 
is, therefore, obtained with an error of the order of tA2 by taking the 
difference of the two extrapolation lines at th/2. A corresponding considera- 
tion may not be applicable to the conduction case in practice, because the 
gradient of the cooling curve changes rapidly immediately after t: as 
discussed above. 
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APPENDIX 

The solution in the general case with radiation and conduction can be 
shown to be expressed in a similar formula to eqns. (7) and (20) with 
substitution of the following expression for { f( t’)} 

{ f’(t’)} = 1 sinh( fi) 

s (1 + s) sinh(fi) + ki/m cosh(VG) 
(Al) 
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where time is normalized by rr as in eqn. (4) and parameters k, and k, are 
defined as 

k, = 7;/r, k, = 7i/7r (AZ) 

7c is the characteristic relaxation time of sample cooling by conduction 

TV = III/KS, (A3) 

The limit of eqn. (Al) with TV --) 0 coincides with the operator expression of 
eqn. (6) in the radiation-dominant case in consideration of kl& + 0. 

Equation (Al) is ~onve~ently rewritten for compa~son with eqns. (20) 
and (21) of the conduction-dominant case as 

{f’(t”‘)} = i/c 
sinh( \lk,k,s) 

s * (1 + k,s) sinhi&&) + kr/m cosh({kT) 

where time c ‘I’ is normalized by rC. The limit of eqn. (A4) with rr + co 
coincides with the following modification of eqn. (21) in consideration of 
k,k, = cl& = k 

’ “(’ “’ ” = f s. sinh~~~~~~~osh~~~ 
where time t “‘. is normalized by rC as in eqn. (A4). 

(A9 
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