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ABSTRACT 

A deconvolution algorithm based on time-varying inverse filtering is applied to a calori- 
metric model. The model is designed to simulate a device in which continuous liquid injection 
takes place. By means of a proper separation of different contributions to the thermogenesis, 
classical tirn~~v~~t deconvolution routines can be applied even if the model presents 
zeros in the time-inva~~t transfer function. The corrections achieved on the thermogenesis 
are evaluated for two different kinds of thermal power dissipation. 

INTRODUCTION 

The development of numericaI methods for signal processing and their 
application to the thermal output signals from calorimetric devices of 
continuous injection (systems of variable mass) had led to import~t results 
in the field of molecular mixtures and of micellar phenomena [l]. 

In previous works [Z-4] we have established the relationships between 
experimental thermograms and the corresponding energy dissipations, called 
thermogenesis. We have also set out the numerical and experimental proce- 
dures required to obtain the parameters entering the computation of the 
thermogenesis from the thermogram. 

The numerical algorithms developed are based on a time-varying inverse 
filtering which relates thermogram and thermogenesis by means of an N-th 
order linear differential equation with time-varying coefficients, For systems 
with an invariant transfer function without zero-singularities, it has been 
shown that invariant methods, the z transform for example, can be used. 

* On leave of absence: Dept. Fisica Apiicada, ETSAB, U.P.C., Av. Diagonal 641, E-08028, 
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The purpose of this work is to extend this kind of treatment to systems 
with zero-singularities in the invariant transfer function. 

The thermogenesis is separated into different contributions in such a way 
that time-invariant deconvolution routines can be applied to every one of 
them. The relative importance of each contribution in the final thermogene- 
sis is studied. Special attention is paid to the influence, on every correcting 
term, of the signal-to-noise ratio of the thermogram. 

THE MODEL 

In a previous paper [4] we developed a simplified model of a heat-flow 
calorimeter with time-varying amounts of reactants in the cell. The relation- 
ship between the thermal power dissipated W(t) and the output signal s(t) 
is given by a differential equation 

; q(t) d’y 
i=O 

= 5 a,(t)% 
i=O 

(1) 

The coefficients a,(t) and Ai( t) can be written in terms of certain 
parameters 7/(t), r,*‘(t) and S’(t) representing the so called “fictitious” 
poles; zeros and sensitivity of the system [4]. Assuming a linear temporal 
variation of these parameters, the coefficients Ai become polynomials 
with order < N + 1. If the variability of the system makes M the maximum 
power of t, then 

M 

&(t) = c A& 

and inserting eqn. (2) in the second member of eqn. (1) 

(2) 

&li($y = ; ( ;/lijF)tj 
i=O j=O i=O 

To decompose W(t) we choose a series with M as a maximum power of t, 

as we did in ref. 5, for the system without zero-singularities. In the present 
case the order chosen for the polynomial is arbitrary and we can choose the 
same order that would correspond to a system without zero-singularities. 
Thus 

W(t) = 5 w,(t)ti (3) 
i=O 

Inserting eqn. (3) in the first member of eqn. (1) and associating homolo- 
gous powers at each member of the differential equation a system of M + 1 
differential equations with constant coefficients is obtained. Every one of 
these equations can now be solved by the usual deconvolution procedures 
used for time-invariant systems. 
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The same model as in ref. 4, consisting of six elements and working in 
situations 1 and 2, will be used here. In the first situation the power 
dissipation takes place in the first element, and C,, Prt and Pi change with 
time. The change of PI2 produces a corresponding change in the sensitivity 
of the model. In the second situation the dissipation takes place in the 
second element, and C, changes with time. 

The values of heat capacities and thermal conductivities considered are 
the values given in Tables 1 and 2 of ref. 4, and the values corresponding to 
the parameters TV, TV*, TV’, TV*‘, Si and & can be found in Tables 3 and 4 
from the same reference. In both situations (1 and 2) the thermogram is the 
difference between the temperatures T, and T6. 

In order to test the deconvolution procedure, two kinds of dissipations 
resembling two typical experimental runs in calorimetry of liquid mixtures 
have been simulated: on the one hand, a mixture of cyclohexane and 
benzene; on the other hand, this same dissipation, showing however a 
sudden discontinuity to simulate a phase separation. 

For the injection of cyclohexane into benzene the dissipation reads 

W(t) =h,E+fiil 

where A, is the injection rate (hi = 5.8546E - 06 mol s-i), and h: the 
excess partial molar enthalpy of the injected component. The latter is given 
by ref. 6 

hE = x,2(3518.1 - 2082.2x, + 2866.8~; - 1253.6x:) 

where x1 and x2 represent the molar fractions of cyclohexane and benzene, 
respectively. In agreement with actual experimental runs, the simulated 
injection takes place during one hour, from t = 100 s to t = 3700 s. During 
this interval the system changes with time, but at t = 3700 s it becomes a 
time-invariant system. 

The second kind of dissipation is equivalent to the previous one from 
t = 100 s to t = 2400 s. For t > 2400 s the dissipation reads 

W(t) = (hf+,)/4 

simulating a process of mixture separation. This produces a discontinuity in 
t = 2400 s. 

For every dissipation, the calorimetric model has been used to compute 
two thermograms: the first thermogram presents a signal/noise > 100 dB, 
the only source of noise being the numeric round-off of the computer during 
the calculations. Additional white noise has been added to the second 
thermogram, to get a signal/noise = 60 dB, a value that is around that 
found in actual experimental the~o~ams. 

The sampling period used to compute the thermograms is At = 1 s, 
selected by the criterion At = 7,/300. 
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RESULTS 

In the first model, a linear variation of the two larger time constants and 
of the sensitivity has been considered; in the second, a linear variation of the 
three larger time constants. As detailed above, the time-variability of both 
models leads to M = 3. 

In what follows, the system of differential equations which applies for 
each one of the models is detailed. The solution starts by solving the last 
equation, which is not difficult because the coefficients in the equation are 
constant. Once W3(t) is obtained, it can be used in the second equation to 
obtain Wz( t) and from it, in a recursive way, ?Vi( t). Thus all the correcting 
terms are determined and hence W(t)_ 

=. ; A,i!E$ 
i=O 

= ;A*$$ 
i=O 

= -+& ,d’+) 
i=O 2r dt' 

= 2 A3i W) 
i=o dt’ 

6 

W, + hOW; + aO_CYd’ f b,W, + 2a,W; + 2a,W, 
d’s(t) 

= c Aoi---- 
i=O dt’ 

W, + b,W; + ~,l;t;” + 2b,W2 + ~u,W,’ f 6a,W, = ~ akin 
i=O 

= &jojy 
i=O 

i AOi% 
i=O 
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where a, = T;’ - +*, b. = T;’ + ~2” and for both systems 

Fq= Bgt) 

q’= d~(~}/d~ 

q” = d2H$ ( t)/dt2 

W(t) = w,(t) + W-,(t) * t + W,(t) * t2 + F&(t) * t3 

Fig. 1. Corresponds to situation 1 in the text. The vertical scale is in arbitrary units, time is in 
seconds. A, simulated thermogenesis; B, corresponding thermogram; C, thermogenesis com- 
puted from Jhe thermogram without addition of noise; D, correcting term lOW,(t).t, 
corresponding to C; E, thermogenesis computed from a thermogram with additional noise 
resulting in a signal-to-noise ratio = 60 dB; F, correcting term 10 W,(t)+ t, corresponding to E. 



Fig. 2. Corresponds to situation 2 in the text. The vertical scale is in arbitrary units, time is in 
seconds. A, simulated thermogenesis; B, corresponding thermogram; C, thermogenesis com- 
puted from the thermogram without addition of noise; D, correcting term lOWI( 1, 
corresponding to C; E, thermogenesis computed from a thermogram with additional noise 
resulting in a signal-to-noise ratio = 60 dB; F, correcting term lOWI{ r). t corresponding to E. 

The contributions W,, ty;, WI and W, have been computed from the 
simulated thermograms” The results are shown in Figs. 1, 2, 3 and 4. 

Figure 1 shows the simulated thermograms and the thermogenesis corre- 
sponding to an ordinary mixture (situation 1). A variable correction IVI(t) + 1 
comes into play. The different pattern obtained when the signal-to-noise 



Fig. 3. Corresponds to situation 1 in the text. The vertical scale is in arbitrary units, time is in 
seconds. A, simulated thermogenesis; B, corresponding thermogram; C, thermogenesis com- 
puted from the thermogram without addition of noise; D, correcting term 10Wl(t).t, 
corresponding to C; D’, correcting term 100W2( t)- t*, corresponding to C; E, thermogenesis 
computed from a thermogram with additional noise resulting in a signal-to-noise ratio = 60 
dB; F, correcting term lowly t, corresponding to E; F, correcting term lOOrV,( t).r2 
corresponding to E. 

ratio is reduced to 60 dB should be noted. In Fig. 2, corresponding to 
situation 2, the correction WI(t) - t becomes irrelevant. 

Figures 3 and 4 correspond to the sim~ation of a mixture separation. The 
influence of WI(t) + t is relatively important (23%) in the region of mixture 



Fig. 4. Corresponds to situation 2 in the text. The vertical scale is in arbitrary units, time is in 
seconds. A, simulated tbermogenesis; B, corresponding thermogram; C, thermogenesis com- 
puted from the thermo~am without addition of noise; D, correcting term, lOWI(r, 
corresponding to C; D’, correcting term l~~~(~).~’ corresponding to C; E, thermogenesis 
computed from a thermogram with additional noise resulting in a signal-to-noise ratio = 60 
dB; F, correcting term lOWI( r, corresponding to E; F, correcting term lOOW,( t).r*, 
corresponding to E. 

separation, and even Wz(t) * tz becomes relevant (2%). It is worth noting 
that any increase in the injection rate would result in an amplification of all 
the correcting terms. 
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CONCLUSIONS 

The contribution W,(t) is the most relevant one in the global thermogene- 
sis. The remaining terms in the series expansion only contribute significantly 
in the discontinuities of the thermal power dissipation. 

Even for relatively low signal-to-noise ratio, the corrective terms are 
significant for an accurate determination of the concentrations at which 
separation of the mixture takes place. 
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