TEMPERATURE PROGRAMMED DESORPTION STUDY OF HYDROGEN ADSORPTION ON LaMO₃ OXIDES

L. GONZALEZ TEJUCA

Instituto de Catálisis y Petroleoquímica, C.S.I.C., Serrano 119, 28006 Madrid (Spain) (Received 30 June 1987)

ABSTRACT

Temperature programmed desorption spectra of H_2 adsorbed on LaMO₃ (M = Cr, Fe, Co and Ni) perovskite oxides were obtained as a function of the adsorption temperature and the reduction temperature of the oxide. In the systems H_2 -LaCrO₃ and H_2 -LaNiO₃, activated adsorption is observed when the adsorption is effected above room temperature. After adsorption of H_2 at room temperature on reduced LaMO₃, the spectra present a desorption peak between 340 and 380 K. LaNiO₃ presents, in addition, a second desorption peak at 610-615 K. These peaks increase in intensity with the reduction temperature of the oxide. The TPD peaks observed for H_2 -LaCoO₃ (red) and H_2 -LaNiO₃ (red) are assigned to hydrogen adsorbed on metallic cobalt and nickel. On LaCrO₃ (red) and LaFeO₃ (red) more oxidized metal centers (M^{n+} ; n < 3) should be involved in hydrogen adsorption. After reduction of the LaMO₃ oxides in several zones of temperature and adsorption of hydrogen at room temperature, LaFeO₃ (red) exhibited the lowest desorption of H_2 . This result is similar to the minima for O₂ adsorption and catalytic activity for total oxidation observed for this oxide.

INTRODUCTION

In our laboratory, LaMO₃ oxides (M = first-row transition metal) are being tested as catalysts for the synthesis of oxygenated products, from $CO + H_2$. At the same time, the surface interactions of the reactants, CO and H_2 , with these oxides are being studied. Frequently, a given molecule adsorbs on the surface of a solid catalyst yielding more than one chemical species. For example, Baranski and Cvetanović [1] detected five forms of adsorbed hydrogen on the surface of ZnO. Temperature programmed desorption (TPD) is a useful technique for the detection of different surface species and for obtaining information on their reactivities. In this paper, data of hydrogen adsorption on LaMO₃ oxides obtained by TPD are reported. TPD spectra were obtained as a function of the adsorption temperature and the reduction degree of the oxide.

EXPERIMENTAL

A 0.5-g LaMO₃ (M = Cr, Fe, Co and Ni) sample was placed in a quartz microreactor which could be heated at 1 K s⁻¹. The analysis of the effluent gases, from the flow system used in the temperature programmed desorption, was effected by means of a UTI model 100 C mass spectrometer. A data acquisition system based on a microprocessor was used to record the signal intensity for H₂ and H₂O, and the temperature of the catalytic bed.

The preparation and characterization of LaMO₃ samples have been described previously [2]. Their BET specific surface area as determined by N₂ adsorption ($S_{N_2} = 0.162 \text{ nm}^2$) at 77 K are given in Table 1. The gases used, H₂ and He were purified by standard methods. TPD experiments were performed after gas-adsorption on oxidized and reduced samples (Tables 1, 2 and 3). For oxidation, a mixture of 21% O₂ + 79% He was passed for 1 h through the sample at 823–923 K (Table 1; these temperatures are 50–100 K below the final heating temperature used in the preparation of each oxide). The reduced samples were prepared from oxidized LaMO₃ by passing a H₂ flow for 1 h at the desired temperature. The samples so treated will be referred to as LaMO₃ (ox OT) and LaMO₃ (red RT) where OT or RT stand for oxidation and/or reduction treatments, the sample was outgassed by passing a He flow for 1 h at the same temperature used for

Oxide	BET specific surface area $(m^2 a^{-1})$	Oxidation temperature (K)	
	(m g)	temperature (K)	
LaCrO ₃	4.3	923	
LaFeO ₃	10.0	823	
LaCoO ₃	9.1	873	
LaNiO ₃	5.8	923	

IABLE	1				
LaMO ₃	oxides	used	in	TPD	runs

TABLE 2

TADID 1

Reduction in H₂ of bulk LaMO₃ oxides

Oxide	Reduction temperature (K)	Reduction degree ^a (e ⁻ per molecule)	
LaCrO ₃	1270	1.3×10 ⁻²	
LaMnO ₃	1173	0.9	
LaFeO ₃	1273	3.0	
LaNiO ₃	773	3.0	

^a $3e^-$ per molecule would amount to full reduction of M^{3+} to M° .

oxidation. The adsorption step was carried out by passing through the sample a flow of H_2 for 0.5 h at room temperature (r.t.) (unless indicated otherwise) and then a He flow for 15 min at r.t. After the oxidation-reduction, outgassing and adsorption steps, heating of the catalyst at 0.5 K s⁻¹ was started and the data acquisition system activated. The flow rates of the O₂-He mixture (for oxidation), H₂ (for reduction and adsorption) and He (for outgassing and as carrier during TPD) were, in all cases, 50 cm³ min⁻¹. The mass spectrometer was calibrated daily against a 409 ppm H₂-He mixture.

RESULTS AND DISCUSSION

Desorbed hydrogen as a function of the adsorption temperature

The effect of the adsorption temperature (T_a) on the TPD spectra has been determined by performing experiments on both extremes of the series of perovskites, namely LaCrO₃ and LaNiO₃ (Figs. 1 and 2). No H₂ desorption has been detected from the oxidized samples when the adsorption was carried out at r.t. However, after adsorption at 623 K, desorption of H₂ from LaCrO₃ (ox 923) was observed above 800 K (Fig. 1a). The amount of desorbed H₂ (q_{H_2}) is significantly larger for $T_a = 773$ K, as can be seen in Fig. 1b where two well-defined peaks at 380 and 835 K are observed (H₂O accompanies H₂ desorption from these oxidized samples). H₂ desorption from the reduced sample LaCrO₃ (red 973) was found to be much higher

Fig. 1. TPD spectra of H_2 adsorbed on LaCrO₃ (ox 923) (a, b) and on LaCrO₃ (red 973) (c, d). Adsorption temperature: 623 (a, c) and 773 K (b, d).

Fig. 2. TPD spectra of H_2 adsorbed on LaNiO₃ (red 773). Adsorption temperature: 473 (a) and 623 K (b).

than that recorded from LaCrO₃ (ox 923). Also, the increase in hydrogen uptake (and therefore desorption) with increasing T_a observed for the reduced sample (Fig. 1c, d) was more pronounced than for the oxidized sample (Fig. 1a, b). The value of $q_{\rm H_2}$ desorbed from LaCrO₃ (red 973) after H₂ adsorption at 623 K (Fig. 1c) is larger (by a factor of 4) than $q_{\rm H_2}$ desorbed from LaCrO₃ (red 923) after H₂ adsorption at r.t. (Table 3). This increase in desorbed H₂ should come from the higher adsorption temperature used in the former case since the increase of $q_{\rm H_2}$ with the reduction temperature of the oxide (T_r) is comparatively small (Fig. 3).

TPD spectra after adsorption of H_2 at 473 (a) and 623 K (b) on LaNiO₃ (red 773) are given in Fig. 2. In both cases, the amount of desorbed H_2 is

TABLE 3

Adsorbed hydrogen $q_{\rm H_2}$ (moles H₂ m⁻²) on LaMO₃ oxides at 298 K as a function of the reduction temperature $T_{\rm r}$ (K)

	LaCrO ₃	LaMnO ₃	LaFeO ₃	LaCoO ₃	LaNiO ₃
$\overline{q_{H_2}}$	1.81×10^{-6}	4.49×10 ⁻⁷	1.11×10^{-7}	9.29×10 ⁻⁷	5.40×10^{-6}
T_r	923	873	823	773	773
$q_{\rm H_2} T_{\rm r}$	1.22×10^{-6}	3.80×10^{-7}	8.60×10^{-8}	3.11×10^{-7}	5.73×10 ⁻⁶
	823	723	723	673	673
$q_{\rm H_2} \ T_{\rm r}$	1.29×10 ⁻⁶	6.27×10 ⁻⁸	4.32×10^{-8}	8.88×10^{-8}	7.00×10 ⁻⁶
	723	573	623	573	573
q _{н2}	0.97×10 ⁻⁶	6.55×10 ⁻⁸	3.96×10 ⁻⁸	2.05×10^{-8}	1.03×10^{-7}
Т _г	523	473	523	473	473

Fig. 3. TPD spectra of H_2 adsorbed on reduced LaCrO₃. Reduction temperature: 523 (a), 723 (b) and 823 K (c).

substantially higher than that recorded after H_2 adsorption at r.t. on this reduced oxide (Table 3). Thus, H_2 adsorption passes through a maximum for $T_a = 473$ K and then decreases at higher T_a .

The data in Figs. 1 and 2 indicate that the adsorption isobars (adsorbed H_2 vs. adsorption temperature) in the systems H_2 -LaCrO₃ (red 973) and H_2 -LaNiO₃ (red 773) present an ascending branch in the zones 298-773 K and 298-473 K, respectively. Similar behaviour in frequently observed in gas-solid systems [3], for example, H_2 -Cr₂O₃ [4], H_2 -Sc₂O₃ [5] and H_2 -Ni

Fig. 4. TPD spectra of H_2 adsorbed on reduced LaFeO₃. Reduction temperature: 523 (a), 623 (b) and 723 K (c).

Fig. 5. TPD spectra of H_2 adsorbed on reduced LaCoO₃. Reduction temperature: 373 (a), 473 (b), 573 (c) and 673 K (d).

[6]. The presence of an ascending branch of endothermic adsorption indicates a transition zone between non-activated and activated adsorption. The temperature zone where this transition is observed and, also, the dependence of $q_{\rm H_2}$ with $T_{\rm a}$ is a function of the transition metal cation M. Therefore, to study the effect of the reduction temperature $T_{\rm r}$, $T_{\rm a}$ was kept constant (at 298 K) in the series of experiments described in Figs. 3-6. It would be

Fig. 6. TPD spectra of H_2 adsorbed on reduced LaNiO₃. Reduction temperature: 473 (a), 573 (b) and 673 K (c).

possible to compare TPD spectra after H_2 adsorption on the oxidized samples by effecting H_2 adsorption above r.t. ($T_a \ge 623$ K for LaCrO₃), but we note that, also, in this case an activated adsorption occurs (Figs. 1a, b). On the other hand, H_2 adsorption at increasing temperatures would alter the oxidation state of the surface in the oxidized samples (and probably, although to a lesser degree, in the reduced ones).

Desorbed hydrogen as a function of the reduction temperature

Representative TPD spectra obtained after H_2 adsorption at 298 K on LaMO₃ oxides reduced in H_2 at 523–823 K (LaCrO₃), 523–723 K (LaFeO₃), 373–673 K (LaCoO₃) and 473–673 K (LaNiO₃) are given in Figs. 3–6. The spectra for LaMnO₃ were given elsewhere [7]. All the series of spectra present a desorption peak at low temperatures: 375–380 K for LaCrO₃, 355–365 K for LaMnO₃ [7], 345–355 K for LaFeO₃, 345–350 K for LaCoO₃ and 340–355 K for LaNiO₃. In addition a second desorption peak at 610–615 K was observed for H_2 –LaNiO₃. The desorption temperatures with increasing reduction temperature. On the other hand, H_2 desorption increases with the reduction degree of the oxides.

In Table 2 data of reduction in H_2 of LaMO₃ oxides are given. These were taken from temperature programmed reduction diagrams [8] (heating rate 4 K min⁻¹). LaCrO₃ and LaMnO₃ are difficult to reduce while LaNiO₃ is easily reducible, yielding an intermediate reduction state (Ni²⁺). The presence of metallic nickel, in addition to Ni²⁺, was observed after reduction of LaNiO₃ at 513 K and sintering in He at 1073 K. LaFeO₃ presents an intermediate reducibility within the LaMO₃ series.

The absence of desorbed H_2 from oxidized samples rules out the M^{3+} ions as adsorption centers. The observed increase of desorbed H₂, in all cases, with the reduction temperature indicates that the adsorption takes place on reduced metallic centers M^{n+} (n < 3). Nickel in LaNiO₃ (red 673) should be nearly reduced to metallic Ni (Table 2). On the other hand, the TPD spectrum of H₂ adsorbed on Ni \cdot SiO₂ [9] is very similar to that in Fig. 6. Therefore, we assign the TPD peaks observed for H_2 -LaCoO₃ and H₂-LaNiO₃ to hydrogen adsorbed on metallic cobalt and nickel. While the TPD peak at lower temperatures appears after H₂ adsorption on LaNiO₃ reduced at 473 K and above, the second peak was observed for reduction temperatures of 573 K or higher. This suggests that the hydrogen adsorption on this oxide corresponding to the TPD peak at lower desorption temperature takes place on metallic centers (Ni°) interacting with neighbouring oxide ions. These two peaks might be associated with molecular and dissociatively adsorbed hydrogen. Cadenhead and Wagner [6] observed dissociatively chemisorbed hydrogen on nickel at adsorption temperatures of 273 K and below. LaCrO₃, LaMnO₃ and LaFeO₃ are more stable in a H₂ atmosphere (Table 2). For example, LaCrO₃ at 870 K in H_2 undergoes a surface reduction of only 0.51 e⁻ per molecule [8]. For these oxides more oxidized metallic centers should be involved in H_2 adsorption.

In Table 3 some data of desorbed H_2 after hydrogen adsorption at r.t. on LaMO₃ oxides reduced at different temperatures are given. For comparative purposes, T_r has been chosen to decrease from LaCrO₃ to LaNiO₃ since the oxide reducibility increases in this direction. The increase of desorbed H_2 with increasing T_r is a maximum for the more reducible oxide (LaNiO₃). It is noticed that LaFeO₃ after reduction in several zones of T_r presents the lowest H_2 desorption. Minima for O₂ adsorption and catalytic activity for total oxidation of CO, propene and isobutene [10] were also found for this oxide within the LaMO₃ series. These results seem to indicate that the stable Ar3d⁵ electronic configuration of the Fe³⁺ ion (with its five half filled 3d orbitals) in the initial perovskite confers to this oxide properties which are significantly different from those of the rest of the LaMO₃ series. It would be of interest to know whether a parallelism between H₂ adsorption and catalytic activity for CO hydrogenation similar to that found for O₂ adsorption and catalytic activity in oxidation processes [10] also holds for LaMO₃ oxides.

ACKNOWLEDGMENT

The author is greatly indebted to the Spanish-North American Joint Committee for Scientific and Technological Cooperation for sponsorship of this work (Project No. CCB8409-003).

REFERENCES

- 1 A. Baranski and R.J. Cvetanović, J. Phys. Chem., 75 (1971) 208.
- 2 J.M.D. Tascón, S. Mendioroz and L. González Tejuca, Z. Phys. Chem. Neue Folge, 124 (1981) 109; J.M.D. Tascón, L. González Tejuca and C.H. Rochester, J. Catal., 95 (1985) 558.
- 3 J.M. Thomas and W.J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic Press, London, 1967.
- 4 C. Bértola, J.F. García de la Banda, L. González Tejuca and J.A. Pajares, An. Real Soc. Esp. Fís. Quím. Ser. B, 67 (1971) 933.
- 5 L. González Tejuca, C.J. Córdoba and J.L.G. Fierro, Z. Phys. Chem. Neue Folge, 118 (1979) 99.
- 6 D.A. Cadenhead and N.J. Wagner, J. Phys. Chem., 72 (1968) 2775.
- 7 L. González Tejuca, A.T. Bell, J.L.G. Fierro and J.M.D. Tascón, J. Chem. Soc. Faraday Trans. 1 (in press).
- 8 J.L.G. Fierro and L. González Tejuca, J. Catal., 87 (1984) 126; J.L.G. Fierro, J.M.D. Tascón and L. González Tejuca, J. Catal., 89 (1984) 209; J.L.G. Fierro, J.M.D. Tascón and L. González Tejuca, J. Catal., 93 (1985) 83; J.M.D. Tascón, J.L.G. Fierro and L. González Tejuca, J. Chem. Soc. Faraday Trans. 1, 81 (1985) 2399.
- 9 R. Spinicci and A. Tofanari, React. Kinet. Catal. Lett., 27 (1985) 65.
- 10 J.M.D. Tascón and L. González Tejuca, React. Kinet. Catal. Lett., 15 (1980) 185; G. Kremenić, J.M.L. Nieto, J.M.D. Tascón and L. González Tejuca, J. Chem. Soc. Faraday Trans. 1, 81 (1985) 939.