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ABSTRACT 

The purpose of this paper is to develop an incremental thermoviscoetastic 

finite element stress analysis method. The formulation is based on the following 

assumptions that (1) valanis’ type endochronic hereditary integral isotropic 

constitutive equations with a viscoelastic intrinsic time measure are used, (2) 

the material is thermorheological simple so that temperature effect on material 

is embedded in reduced time, (3) shear relaxation modulus is composed of the 

first two terms of prony series, (4) the material is dilatational elastic that 

bulk modulus and thermal expansion coefficient are both constants the Leibnitz 

rule is used to derive the incremental thermovisc~iastic stress-strain equations, 

then the incremental governing equilibrium equations with a temperature-dependent 

viscoelastic pseudo force are derived by principle of virtual work. 

Two examples are adopted to demonstrate the validity of the present 

anal.ysis model, namly, creep of infinite strip in nonuniform temperature field 

across the width and a transient nonhomogeneous thermal stress analysis of 

solid propellant grain structure. From the good results of the above two examples, 

it is concluded the proposed method is rather satisfactory. 

INTRODUCTION 

Temperature effects for sensitive rate-dependent viscoelastic materials 

have to be considered in the presence of appreciable temperature variation. It 

is reasonable for moderate temperature field to assume the material is linear 

viscoelastic and thermorheological simple, therefore the effect of temperature 

on the material response functions can be accounted by reduced time through 

the Time-Temperature Shift Factor. Analytic solutions using Alfrey’s [l] 

integral transform approach are limited to certain special problems [2,3]. 

‘Morland and Lee [4] point out the correspondence principle fails to hold 

for nonhomogeneous, transient temperature distribution. For analysis of viscoelastic 
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structure with involved geometry and temperature distribution, various numerical 

solutions using the finite element method have been proposed [5-lo]. 

In the present investigation the incremental endochronic thermoviscoelastic 

constitutive equations are derived first, then the incremental governing equilibrium 

equations are derived by principle of virtual work. 

A computer program based on above formulations is written to analyze the 

following two examples: The first example is 1-D time hardening thermal 

creep analysis of an infinite plate in nonhomogeneous parabolic temperature 

distribution across the width. The creep deformations and stress relaxtions 

obtained are reasonable compared to those of other analytical approach [ll]. 

The second example is stress analysis of a plane strain slotted solid propellant 

grain structure subjected fo temperature variation during curing. The finite 

element solution for displacement agrees well but stress deviates from quasi- 

elastic solution which presented in White[6]. These twd examples verify the 

applicability of the present model without any difficulty for thermoviscoelastic 

structures analysis. 

DIFFERENTIAL GOVERNING EQUATIONS OF THE ENDOCHRONIC 

THERMOVISCOELASTIC FORMULATION 

The endochronic constit utive equations for isotropic thermorheologically 

simple materials under small temperature variation and small deformation condi- 

tions are derived by Valanis [12] as follows: 

u4 L 

Fig. 1: Flat plate with nonuniform temperature distribution.(a) schematic 

interpretation and temperature function (b) finite element meshes 

and boundary conditions of one-fourth finite model. 



Sj(Z) = Zf(yF -e’)$$dz’ 
;ME kk 

ukk(z) = 31;K(c- Q)aZ’dz’ + 3J;D(S- 5’$$ dz’ 
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where S.. and e.. are deviatoric stress and strain tensors; u kk and E kk are 

hydrostatic iiress ai: strain tensors; u(S) and K(S) are Shear Relaxation Modulus 

and Bulk Relaxation Modulus; D(S) and 8 are Temperature Effect Modulus and 

temperature increment respectively. The time hardening creep intrinsic time is 

defined with respect to effective stress oe and t as [13] 

dz = g(oe,t)dt 

The reduced time 5 is defined as 

(2-3) 

5 =.@T[T(Xk,t’)]dZ’ (2-4) 

where cp T is the reciprocal of Time-Temperature Shift Factor a~; T(Xk,Z) is a 

temperature function corresponding to postition. coordinate Xk and material 

time coordinate Z. The material functions K(z), D(z) and IJ(Z) are assumed in 

the following form 

K(z) = H(z)K (2-S) 

D(z) = -3eK (2-6) 

and 

2u(z) = rr O + v le-ailz (2-7) 

where ~1, K and H(z) are thermal expansion coefficient, Bulk Constant and Step 

Function; uO, r.11 and ~1 are material constants. Through the similar procedures 

proposed recently by the authors[l3], the two term endochronic differential 

- Mendelson[ll] 
0 Present 

, = 0 lxnr.r 

Time, hr 

Fig. 2: Stresses relaxation in X-direction at center and outer edges with 

right end plate fixed. 



Equatim (2-13) can be reduced to a matric form as 

[N] is shape function matrix; [ES] is St: rain-displrtcem ent coefficient 

is surface traction force; { g 1 is unit volume body force. 
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NUMERICAL EXAMPLES AND RESULT DISCUSSION 

To evaluate the capability of the endochronic thermoviscoelastic finite 

element algorithm, two examples are anlayzed and compared with analytic 

solutions or other finite element approaches. 

The first problem shown in fig. l(a) is an uniaxial(x-dir.) infinite plate subjected 

to a nonuniform parabolic temperature distributions ‘B = 8 B + 6OO(y 2+ $, along 

y direction, where oO is an arbitrary reference temperature. A quarter of 

finite plate is used for analysis which is shown in fig. l(b). The material pa- 

rameters are adopted[ll] as : E = 28 x 106,u = 9.5x1o-6. 

0, then K = 5, ~(0) = + and II I 

If we choose ,I = u. = 

= E. In this material-temperature independent 

case ‘P T = 1. The intrinsic time dz is defined as dz = o‘$tBdt where e 1, A and 

B are found by fitting the uniaxial creep test curve “yl = 3 x 10 -2404 asA 

= 3, B = 0 and u1 = 1.386~10~~. 
11 

Fig. 2 shows the x-direction stresses relaxation 

at y = 0, and y = 1. The results of the present analysis is slightly larger than 

the analytical solutions [ll], because the right end of the plate is fixed. It is 

concluded that the analytic solutions are lowere bound. Fig. 3 shows the stresses 

relaxation of plate with free right end. The results are a little less than the 

analytic solutions, thus the analytic solution becomes the upper bound. 

In the second example we analyze a plane strain slotted grain configuration 

where the temperature field varies with time and position. Fig. 4 shows the 

dimension and finite element meshes of one-quarter segment of the cross 

section in which the outer boundary is fixed. 

Material properties are adopted from Ref. 161 as : v(t) = 33.337 + 3360.448x 

e-2*4245ksi, k = 100,000 ksi. (I= 6x10-’ ‘/ $7 ad a,_,. = 
-K1(e - eo) 

10_K2 _ (e _ ed, where K4 = 

Fig. 4: Viscoelastic slotted grain (a) cross sectional dimension 

element meshes of one-fourth model. 

(b) finite 
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h 
- White[6] 
X Quasi elastic[6] 
B Present 

Fig 5: Displacement at point A. 

3.05, K2 = 225.7 and o. = 70°F. The material constants uO = 66.674, ul = 6720.976 

and CI 1 = 2.4245 are determined. 

In this example a temperature 

input. 

field e(r,t) = 70 - 70(1 - COS~)(#~ 'F is 

The intrinsic time measure dz = dt and time increment A t = 0.05 min. 

Fig. 5 is y-direction creep deformation at point A. The displacement curves 

obtained by using present model and by White [6] are a little higher than the 

quasi-elastic solutions which can be regarded as satisfactory. Fig. 6 shows the 

y-direction stresses varying with time at right slot tip. The stresses obtained 

by the present alaysis is below that of quasi-elastic analysis but the stresses 

obtained by White [6] is above that of quasi-elastic analysis. 

- Whiter61 
X Quasi elastic[6] 
0 Present 

Time, min 

Fig. 6: Stress near right slot tip. 
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