THERMOANALYTICAL STUDY OF SOLID STATE $Al_4C_3-X_2S_2O_8$ AND $B_4C-X_2S_2O_8$ (X = Na, K) BINARY SYSTEMS

KHALAF F ATIYA and FADHIL JASIM *

Department of Chemistry, College of Science, University of Baghdad, Jadriya, Baghdad (Iraq) (Received 21 July 1987)

ABSTRACT

TG, DTG and DTA studies for Al_4C_3 and B_4C alone and in binary molar ratios (under static air and dynamic N_2) mixtures with $Na_2S_2O_8$ or $K_2S_2O_8$ has shown that Al_4C_3 undergoes gradual degradation from 50°C upwards The small exo-peak observed around 800 °C belongs to the polymorphic modification of the freshly prepared Al_2O_3 The main decomposition step starts around 880 ° C Under N₂, B_4C is thermally stable up to the ceiling temperature of the heating programme (1050 °C), in air it gains appreciable weight (35 5%) over the temperature span 580-1050 °C Under either atmospheres, pyrosulphates of Na and K react with Al₄C₃ ($T_{\text{max}} = 625^{\circ}$ C) forming Na₃Al(SO₄)₃ and K₃Al(SO₄)₃ which are stable up to 590 and 630°C, respectively Stoichiometric equations for their formation have been suggested A eutectic mixture $(K_3Al(SO_4)_3 + K_2SO_4)$, $T_{max} = 600 \degree C$, is found B₄C reacts with molten Na₂S₂O₇ and K₂S₂O₇ forming, respectively, Na₂B₄O₇, γ-Na₂B₄O₇ and $K_2B_4O_7$ as major products The by-products, Na_2SO_4 and K_2SO_4 , react around 800 ° C with B_2O_3 forming extra Na₂ B_4O_7 and $K_2B_4O_7$, with aluminium oxide, meta aluminates of Na and K are formed It seems that the ionic carbide (Al_4C_3) is less stable and more reactive than the covalent carbide $(B_{4}C)$ This suggests that they have different stereochemistry, resonating structures and molecular shapes

INTRODUCTION

Aluminium carbide (Al_4C_3) belongs to the salt-like ionic class of carbides (methanides) [1] At 1800 °C it reacts with N₂ to form Al_5C_3N [2] It is used for the preparation of many organometallic compounds [2] The Al–C bond length is 190–222 pm, the C–C bond is much longer, 316 pm [3] B₄C is a semiconductor covalent-class carbide [4–5] with rhombic crystalline structure and is a good neutron absorber [6] It is used for lining high-temperature and reactive containers and to increase the coherence strength of cement and ceramic materials

^{*} Author to whom correspondence should be addressed

A recent literature survey has not revealed any thermoanalytical investigations of Al_4C_3 and B_4C alone or in mixtures. This work investigates the non-isothermal behaviour of the two carbides individually or in binary mixtures with persulphates of Na and K under static air and dynamic N_2 atmospheres

EXPERIMENTAL

Reagents

Commercial Al_4C_3 and B_4C (Fluka AG Buchs), sodium and potassium peroxodisulphates (Hopkin and Williams) were used Alpha-Al₂O₃ (MOM) desiccated at 1300 °C for two hours was used as reference for DTA

Apparatus and procedure

The thermal analyser, the procedure and X-ray diffractometer used for the identification of reactants and products of thermal analysis were as described previously [7] Dry nitrogen flow rate was $370 \text{ cm}^3 \text{ min}^{-1}$

RESULTS AND DISCUSSION

Thermoanalysis of Al_4C_3 and B_4C

The thermoanalytical behaviour of both carbides is reported in Fig. 1 and Table 1 A very slow weight loss up to 4 45 wt% (over the temperature range 50-450 °C) due to catalytic decomposition of Al₄C₃ by persulphates, is indicated by the TG curve Afterwards, the TG exhibits a sudden weight

TABLE 1

Preparation and results of $Al_4C_3 - Na_2S_2O_8$ molar ratio binary mixtures

$ \frac{Al_4C_3 - Na_2S_2O_8}{molar} $ ratio	Weight of sample (mg)	Weight of Al ₄ C ₃ in sample (mg)	Weight of Na ₂ S ₂ O ₈ in sample (mg)	Weight of O ₂ lost (mg)		Temp of O ₂ lost (° C)	
				Theo	Exp	$\overline{T_i}$	T_{f}
0 1	200		200	13 4	13	160	200
12	200	46 43	153 57	10 3	10	175	215
1 1	200	75 4	124 6	8 37	8	175	220

Fig 1 Thermoanalysis curves of Al_4C_3 and B_4C under (static) air atmosphere

gain (75 wt%) attributable to two consecutive slow air oxidation processes of Al_4C_3 , both of which are described below

$$Al_4C_3 + 6O_2 \xrightarrow{\Delta} 2Al_2O_3 + 3CO_2 + heat$$
 (1)

The XRD patterns of the final decomposition products confirm the presence of Al_2O_3 and unreacted Al_4C_3 [8,9] At 810 °C a small sharp exo-peak of

Decompo- sition of Al_4C_3 (°C)	Formation temp of Na ₃ Al(SO ₄) ₂ (°C)		Decor temp Na ₃ A ($^{\circ}$ C)	nposition of l(SO ₄) ₂	Melting point of Na ₂ S ₂ O ₇ (°C)	Melting point of Na ₂ SO ₄ (°C)	Al ₄ C ₃ oxidation (°C)	
	$\overline{T_{i}}$	$T_{\rm f}$	$\overline{T_1}$	$T_{\rm f}$				
				_	370	880	-	
50	350	400	590	760	_	630	≥ 880	
50	310	360	590	660	-	610	≥ 880	

Fig 2 Thermoanalysis curves of $(Al_4C_3 - Na_2S_2O_8)$ molar ratio binary systems

polymorphic modification of Al_2O_3 appears under air, and under N_2 , at $T_{max} = 786 \,^{\circ}C$ which means that dynamic N_2 promotes the process

The TG and DTG traces of B_4C in air show that it is thermally stable up to 580°C Thereafter, a large weight gain of 355 wt% obtained beyond 580°C belongs to the combustion of B_4C . This is accompanied by a large exo-peak that appears on the DTA curve between 650 and 780°C X-ray diffractometry of the final products identifies the presence of B_2O_3 [10] and unreacted B_4C [11] The oxidative decomposition follows

$$B_4C + 4O_2 \xrightarrow{\Delta} 2B_2O_3 + CO_2 + heat$$
(2)

The broad exotherm before 540 °C is believed to be due to variation of specific heats of boron carbide with rise of temperature A negligible weight gain is observed after 700 °C in N_2 , the corresponding DTA reveals no enthalpy change.

Thermoanalysis of Al_4C_3 -Na₂S₂O₈

Figure 2 and Table 1 show the results of Al_4C_3 $Na_2S_2O_8$ molar ratios heated in air The T_1 and T_f for the decomposition of the persulphate in

mixtures exceeds that for $Na_2S_2O_8$ alone by 15 and 20 °C for the ratios 1 2 and 1 1, respectively, so that the heat resistance of the latter is catalytically improved in the presence of Al_4C_3 Appreciable decomposition of the latter starts at 50 °C and is catalysed by $Na_2S_2O_8$ The acute exotherms at 350 and 310 °C accompanied by weight losses of 14 and 12 mg for 1 2 and 1 1 ratios, respectively, represent an unresolved redox reaction between molten $Na_2S_2O_7$ and Al_4C_3

$$Al_4C_3 + 3Na_2S_2O_7 + 6O_2 \xrightarrow{\Delta} 2Na_3Al(SO_4)_3 + 3CO_2 + heat$$
(3)

X-ray analysis for samples of 1 1 and 1 3 ratios heated up to 440 °C reveals the presence of Na₃Al(SO₄)₃ [12], traces of Al₂O₃ and unused Al₄C₃ The double salt is found to be thermally stable up to 590 °C, afterwards it undergoes simultaneous melting ($T_{max} = 625$ °C) [13], volatilization and decomposition

$$2\mathrm{Na}_{3}\mathrm{Al}(\mathrm{SO}_{4})_{3} \xrightarrow{\Delta} 3\mathrm{Na}_{2}\mathrm{SO}_{4} + 3\mathrm{SO}_{3} + \mathrm{Al}_{2}\mathrm{O}_{3}$$

$$\tag{4}$$

At 590-615°C, a decrease of 60 wt% occurs, and at 615-660°C the remaining 40 wt% is gone For the 1 2 ratio the decomposition occurs in

Fig 3 Thermoanalysis curves of $Al_4C_3-K_2S_2O_8$ binary system under (static) air atmosphere

one step After 870 °C, a weight gain due to oxidation of excess Al_4C_3 occurs In nitrogen, the TG and DTG curves (not shown for brevity) infer that between 50 and 110 °C a small weight loss of sample is observed for the 1 1 ratio, the T_1 and T_f for the persulphate decomposition are shifted to 165–195 °C, respectively The Na₂S₂O₇–Al₄C₃ reaction (1 1 ratio) takes place in two exothermic stages, a major one between 270 and 350 °C and a minor one between 370 and 410 °C, revealing the complex route for the formation of Na₃Al(SO₄)₃ in N₂ or air Under N₂, a smaller exotherm appears ($T_{max} = 910$ °C) after the melting endotherm of Na₂SO₄ attributable to the reaction

$$Na_2SO_4 + Al_2O_3 \xrightarrow{\Delta} 2NaAlO_2 + SO_3 + heat$$
 (5)

A monotonic behaviour is observed for the 1 2 ratio, except that the formation of the double salt occurs in one step and the burning exotherm of unreacted Al_4C_3 (after 860 °C) is larger in air but completely demolished in N₂ Higher ratios, such as 2 1, behave similarly, except that the combustion step beyond 820 °C becomes enormously large, and in N₂ two sharp exo-peaks, a large one between 800 and 910 °C and a smaller between 910 and 980 °C appear (see eqn (5)) The latter represents a crystallization process Naturally, in air the combustion exotherm of the carbide overlaps these exo-peaks

Thermoanalysis of $Al_4C_3-K_2S_2O_8$

 Al_4C_3 has catalytically lowered the T_1 of persulphate degradation (Fig 3 and Table 2) by about 22°C for either ratio Unexpectedly, no weight loss of the analysed sample was observed up to 200°C, which means that $K_2S_2O_8$ delays the decomposition of the carbides Distinct exotherms ($T_{max} = 320$ °C for the 1 1 and 365°C for the 1 2 ratios, respectively) are observed on DTA and represent the exo-reaction between carbide and pyrosulphate It is worth noting that T_{max} increases as the Al_4C_3 $K_2S_2O_8$ ratio decreases,

Al_4C_3 - $K_2S_2O_8$ molar ratio	Weight of sample (mg)	Weight of Al_4C_3 (mg)	Weight of K ₂ S ₂ O ₈ (mg)	Temp of O_2 lost from $K_2S_2O_8$ (°C)		Weight of O_2 lost from $K_2S_2O_8$ (mg)		Decompo- sition temp of $K_2S_2O_7$ (°C)
				$\overline{T_{i}}$	$T_{\rm f}$	Theo	Exp	
0 1	200	_	200	182	205	10 82	10 5	455-865
12	200	42	158	160	200	8 54	8	260
11	200	69 5	130 5	160	200	7	7	260

TABLE 2

Preparation and results of	thermal analysis of	$f Al_4C_3 - K_2S_2O_8$	binary systems
----------------------------	---------------------	-------------------------	----------------

indicating the catalytic role of the carbide played in decreasing the activation of the system The *d*-lines for samples heated up to 340° C identify $K_3Al(SO_4)_3$ [14], in addition to α -Al₂O₃ and unburned Al₄C₃ Calculations suggest the following stoichiometric reaction

$$3\mathbf{K}_{2}\mathbf{S}_{2}\mathbf{O}_{8} + \mathbf{Al}_{4}\mathbf{C}_{3} + 6\mathbf{O}_{2} \xrightarrow{\Delta} 2\mathbf{K}_{3}\mathbf{Al}(\mathbf{SO}_{4})_{4} + \mathbf{Al}_{2}\mathbf{O}_{3} + 3\mathbf{CO}_{2} + \text{heat}$$
(6)

The exo-peak for the 1 1 ratio infers a reaction in the solid state, whereas that for the 1 2 ratio occurs after melting of the pyrosulphate Calculation shows that not all the pyrosulphate reacts with Al_4C_3 Unreacted $K_2S_2O_7$ pyrolyses, forming K_2SO_4 whose B-a endotherms [15] appear at T_{max} of 560 and 580 °C $K_3Al(SO_4)_3$, melting $T_{max} = 600 °C$ (mp of pure compound = 690 °C) [14], starts decomposition at 630 °C, which goes on to 690 °C for the 1 1 ratio (weight loss = 16 mg), and, for the 1 2 ratio, continues to 760 °C in two steps (weight loss = 18 mg) The overall decomposition steps are exothermic, this includes a polymorphic modification of the freshly-formed α -Al₂O₃ X-ray diffraction for samples heated up to 690 °C, in N₂ or air, confirms the absence of $K_3Al(SO_4)_3$ *d*-lines and the presence of those of K_2SO_4 , Al₂O₃ and Al₄C₃ Beyond 940 °C a weight gain due to combustion of Al₄C₃, accompanied by evolution of heat, is obtained in air In N₂ two distinct exo-peaks similar to those previously obtained (Fig 2) are due to the formation and crystallization of NaAlO₂

In conclusion, it seems that the C_3^{4-} ion persists longer during decomposition in the presence of $K_2S_2O_8$ than with $Na_2S_2O_8$

A distinct feature of this system is that the melting endotherm of the double salt precedes the decomposition exotherms, in the previous system the two peaks are overlapped (same T_{max})

Thermoanalysis of $B_4C-Na_2S_2O_8$

Table 3 shows the preparation and results of thermal analysis of this binary system Figure 4 indicates that B_4C has shifted the temperature for

Temp of reaction (°C)		Phase change of pyro (°C)	Phase Melting point change of pyro of pyro (°C) (°C)		ompo- of l(SO ₄) ₃	Phase change of K ₂ SO ₄ (°C)	Melting point of K ₃ Al(SO ₄) ₃	Oxidation of Al ₄ C ₃
T_1	$T_{\rm f}$			$\overline{T_1}$	$T_{\rm f}$			
_	_	320	390		_		_	
340	380	320	_	630	760	560	600	940
290	320		-	630	690	580	600	940

B_4C- Na ₂ S ₂ O ₈ molar ratio	Weight of B_4C in sample (mg)	Weight of Na ₂ S ₂ O ₈ in sample (mg)	Weight of sample (mg)	Temp of O_2 lost from $Na_2S_2O_8$ (°C)		Weight O_2 lost from Na_2S_2C (mg)	Weight of O_2 lost from $Na_2S_2O_8$ (mg)		
				$\overline{T_1}$	$T_{\rm f}$	Theo	Prac		
0 1	_	200	200	160	200	13 4	13		
1 2	21	179	200	170	210	12	12		
1 1	37 8	162 2	200	175	210	109	10 5		
2 1	63 64	136 36	200	180	210	9 16	9		

Preparation and results of $B_4C-Na_2S_2O_8$ molar ratios binary systems

the decomposition of the persulphates and pyrosulphate towards higher values Afterwards, a two-step overlapped exothermic reaction occurs between carbide and pyrosulphate, accompanied by a weight loss of 22 and 24 wt% for the 1 1 and 1 2 ratios, respectively *d*-Lines for samples heated up

Fig 4 Thermoanalysis curves of $B_4C-Na_2S_2O_8$ binary systems under (static) air atmosphere

TABLE 3

Melting point of $Na_2S_2O_7$	Reaction	Reaction	Temp of E	Melting	
	temp of B_4C and $Na_2S_2O_7$ (°C)	temp of B_4C and Na_2SO_4 (°C)	1st step	2nd step	point of Na ₂ SO ₄
320		~			880
355	355	720	690	870	855
380	380	720	670	850	830
365	365	700	640	875	850

to 520 °C show the presence of $Na_2B_4O_7$ [16], γ - $Na_2B_4O_7$ [17]. Na_2SO_4 [18] and excess B_4C

Calculations indicate that the stoichiometric ratio is 1 1 and the redox reaction is

$$\operatorname{Na}_{2}\operatorname{S}_{2}\operatorname{O}_{7} + \operatorname{B}_{4}\operatorname{C} + 4\operatorname{O}_{2} \xrightarrow{\Delta} \operatorname{Na}_{2}\operatorname{B}_{4}\operatorname{O}_{7} + 2\operatorname{SO}_{3} + \operatorname{CO}_{2} + \operatorname{heat}$$
(6)

The combustion of unreacted B_4C begins at 560 °C and reaches a maximum at 690 °C A sharp but comparatively smaller decomposition exotherm (Fig 5) is obtained in N₂ (no B_4C combustion) as follows

$$\operatorname{Na}_{2}B_{4}O_{7} \xrightarrow{\Delta} \operatorname{Na}_{2}O + 2B_{2}O_{3} + \text{heat}$$
 (7)

The exothermicity of the above reaction is ascribed to polymorphic crystallization of B_2O_3 at high temperatures The disappearence of Na_2SO_4 is due to its reaction with B_2O_3

$$Na_{2}SO_{4} + 2B_{2}O_{3} \xrightarrow{\Delta} Na_{2}B_{4}O_{7} + SO_{3}$$
(8)

Under dynamic N_2 a reaction similar to the above takes place X-ray diffraction patterns of the final product infer the presence of unreacted B_4C . The same decomposition trend has been found for the 2–1 ratio (Fig 5) in air and N_2 , under the latter the large combustion exotherm of B_4C completely vanishes

Thermoanalysis of $B_4C-K_2S_2O_8$

The preparation and results of various molar ratios of this binary system are shown in Table 4 and Fig 6 The T_1 and T_f of $K_2S_2O_8$ and $K_2S_2O_7$ decomposition are catalytically lowered by B_4C , the effect increases as the ratio B_4C $K_2S_2O_8$ increases The exo-peaks at 460 (1 1) and 480 °C (1 2) ratios represent the triple-step exothermic reaction between pyrosulphate

Fig 5 Thermoanalysis curves of $B_4C-Na_2S_2O_8$ (2–1 ratio) in (static) air and (dynamic) N_2 atmospheres

and carbide X-ray diffractometry for samples heated to 530, 550, 580 and 680 °C identifies $K_2B_4O_7$ [19] and unreacted B_4C and K_2SO_4 (from pyrolysis of excess $K_2S_2O_7$) Thermogravimetric computations suggest the following stoichiometric reaction

$$K_2S_2O_7 + B_4C + 4O_2 \xrightarrow{\Delta} K_2B_4O_7 + 2SO_3 + CO_2 + heat$$
(9)

TABLE 4

Preparation and results of B4C-K2S2O8 molar ratio binary systems

$B_4C-K_2S_2O_8$ molar ratio	Weight of sample (mg)	Weight of B ₄ C (mg)	Weight of $K_2S_2O_8$ (mg)	Temp of O_2 lc °C	o ost	Weight of O ₂ lost (mg)		Phase change of $K_2S_2O_7$
				T_1	$T_{\rm f}$	Theo	Exp	(\mathbf{C})
0 1	200		200	182	205	11 83	10 5	310
12	200	186	181 4	160	170	10 7	10 5	320
1 1	200	34	165 9	160	180	98	95	320

Fig 6 Thermoanalysis curves of $B_4C-K_2S_2O_8$ molar ratios under (static) air atmosphere

At 600 °C a polymorphic change of $K_2B_4O_7$ is seen as a small exo-peak on DTA traces of both ratios The B-a phase change endotherm of K_2SO_4 is seen at a T_{max} of 560 °C At $T_{max} = 720$ and 876 °C, the overlapped exo-peaks for the combustion of B_4C (accompanied by weight gain) and reaction of the freshly-formed B_2O_3 , with K_2SO_4 , are observed, respectively $K_2SO_4 + 2B_2O_3 \xrightarrow{\Delta} K_2B_4O_7 + SO_3 + heat$ (10)

M P of K ₂ S ₂ O ₇ (° C)	Decomposition temp of K ₂ S ₂ O ₇ (°C)		Reaction temp of B_4C and $K_2S_2O_7$ (°C)		Reaction temp of B_4C and K_2SO_4 (°C)		Phase change of K ₂ SO ₄	Temp of B ₄ C oxidat- ion
	$\overline{T_1}$	$T_{\rm f}$	$\overline{T_{i}}$	$T_{\rm f}$	$\overline{T_1}$	$T_{\rm t}$	(°C)	(°C)
395	455	865	-	-	-	_	_	_
385	400	570	480	570	750	760	560	600
380	380	550	460	550	720	725	560	600

X-ray diffraction patterns for samples heated up to $730 \,^{\circ}\text{C}$ reveal increase of intensity of *d*-lines of $K_2B_4O_7$ and quenching of those of K_2SO_4

A decomposition trend similar to that of the previously discussed $B_4C-Na_2S_2O_8$ system has been found in the N_2 atmosphere

REFERENCES

- 1 FA Cotton and G Wilkinson, Advanced Inorganic Chemistry, 3rd edn, Wiley-Interscience, New York, 1972
- 2 P J Durrant and B Durrant, Introduction to Advanced Inorganic Chemistry, Wiley, New York, 1962
- 3 MV Stackelberg and E Schnorrenberg, Z Phys Chem, B-27 (1934) 337
- 4 G R Finly, Chem Can, 4 (1952) 41
- 5 T Moeller, Inorganic Chemistry, Wiley, New York, 1953
- 6 W D Kingery, Property Measurements at High Temperatures, Wiley, New York, 1959
- 7 R M Al-Shukry and F Jasim, Thermochim Acta, 37 (1980) 97
- 8 ASTM Card 10-173
- 9 ASTM Card 11-629
- 10 ASTM Card 6-297
- 11 ASTM Card 6-555
- 12 ASTM Card 3-546
- 13 K A Bolshakov, PI Fedorov and NI Illingruss J Inorg Chem, 8 (1963) 1350
- 14 M M Barbotti, F Jasim and S K Tobia, Thermochim Acta, 21 (1977) 237
- 15 P P Garn, Thermoanalytical Methods of Investigation, Academic Press, New York, 1965
- 16 ASTM Card 27-656
- 17 ASTM Card 22-1346
- 18 ASTM Card 24-1132
- 19 ASTM Card 23-472