MECHANISTIC MODELING OF THE PYROLYSIS OF n-HEPTANE

D S ARIBIKE * and A A SUSU

Department of Chemical Engineering, University of Lagos, Lagos (Nigeria) (Received 3 August 1987)

ABSTRACT

A mechanistic model of the thermal decomposition reactions of n-heptane at high conversions was proposed on the basis of observed product distributions and a complex free radical chain mechanism The predicted product distributions showed a reasonably good agreement with the experimental results of an earlier work by the authors of this paper (Thermochim Acta, 127 (1988) 247) The radical concentrations varied significantly with reaction time Furthermore, the appearance of allylic radicals (C_1H_5 and C_4H_7) is an indication of the presence of secondary reactions of olefinic primary products and hence of inhibition in n-heptane pyrolysis

NOMENCLATURE

- С, concentration of *i*th species (gmol 1^{-1})
- t reaction time (s)
- S_{i} stoichiometric constant of *i*th species in the *j*th reaction
- rate of *i*th reaction (mol $l^{-1} s^{-1}$)
- rate constant of forward reaction $(s^{-1} \text{ or } | \text{mol}^{-1} s^{-1})$
- $r_j k_j k'_j$ rate constant of reverse reaction $(s^{-1} \text{ or } 1 \text{ mol}^{-1} s^{-1})$
- Ň' total number of species
- Ntotal number of reactions
- pre-exponential factor $(s^{-1} \text{ or } | \text{mol}^{-1} s^{-1})$ A
- activation energy (cal mol^{-1}) E

INTRODUCTION

Expansion in the petrochemical industry, the prevailing decline in demand growth for ethylene, feedstock flexibility, unstable prices and fierce competition among manufacturers have provided the impetus for extensive

^{*} Author to whom correspondence should be addressed

research into the development of hydrocarbon pyrolysis models applicable to a wide range of feedstocks—from ethane and propane to whole crudes The intense competition of the past few years has resulted in marked improvements in the efficiency of olefine production [1]

Better understanding of the mechanisms of the pyrolysis of hydrocarbons would be of great economic importance, when one considers the costs of petrochemical plants Besides, models can be used in optimizing thermal cracking operations and in reducing costly and time-consuming experimental programs [2] Mechanistic modeling is widely used thanks to the availability of fast computers Though it is initially more expensive and time-consuming, its long term advantage is important, once it is developed, it is no longer necessary to employ an expensive pilot plant [3] Furthermore, mechanistic models account extensively for free radical reactions which play very significant roles in hydrocarbon pyrolysis Also, the pyrolysis of hydrocarbons under industrial conditions occur at high conversions where secondary reactions of radicals predominate

Mechanistic models have been used mainly in hydrocarbon pyrolysis studies at low conversions [4–7], there are few applications at high conversions [8,9] The scarcity of mechanistic models of hydrocarbon pyrolysis at high conversions may be due to the complexity of the mechanism, the number of reactive species increases with conversion leading to excessive computation time Also, most of the mechanistic modeling studies were on light hydrocarbons, there are few reported studies on the modeling of the pyrolysis of medium and heavy hydrocarbons [7,16,17] Two of the latter studies [16,17] were concerned with the prediction of the initial product distributions of the pyrolysis of n-heptane and other hydrocarbons at temperatures of 440-700 °C on the basis of the Rice–Kossiakoff (R–K) theory [10,11] Therefore, as far as the present authors are aware, there is no reported study on the mechanistic modeling of n-heptane pyrolysis up to the high conversion region

In the present study, a mechanistic model of n-heptane pyrolysis is proposed on the basis of experimental product distributions, R-K theory and literature information Modifications made to the R-K theory in accounting for the secondary reactions of higher α -olefins in an earlier work by the authors of this paper [12] are adapted in the present work

REACTION MECHANISM AND MODEL

To develop mechanistic models, an intrinsic reaction mechanism is determined on the basis of the most plausible set of elementary reactions (ER) Also, the development of well-balanced mechanistic models is possible due to accurate and detailed thermochemical kinetic data and increased availability of pyrolysis data [16] Thermal cracking of n-heptane produced ethylene, propylene, methane, 1-butene, 1,3-butadiene and hydrogen as major products [12,18], relatively smaller amounts of ethane, propane, 3-methylbutene, 1-pentene, 1-hexene and benzene were also produced It is generally accepted that the pyrolyses of hydrocarbons proceed via a free radical chain mechanism In explaining the product distributions of n-heptane pyrolysis at high conversions Bajus et al [18] proposed the following mechanism based on the R-K theory

$$1-C_{7}H_{15} \xrightarrow{a} 3C_{2}H_{4} + CH_{3}^{*}$$

$$2-C_{7}H_{15} \xrightarrow{b} C_{3}H_{6} + C_{2}H_{4} + C_{2}H_{5}$$

$$3-C_{7}H_{15}^{*} \longrightarrow \overbrace{d}^{c} 1-C_{6}H_{12} + CH_{3}^{*}$$

$$4-C_{7}H_{15} \xrightarrow{e} 1-C_{5}H_{10} + C_{2}H_{5}$$

However, Bajus et al [18] and other workers [12,16,19] found the R-K theory to be inadequate in accounting for the product distributions of the pyrolysis of hydrocarbons at high conversions

The major initiation reactions of n-heptane pyrolysis at high conversions are not only the unimolecular scission of primary and secondary C-C bonds $C_7H_{16} \rightarrow R + R'$

(R' and R' are alkyl radicals) but also the cleavage of the C-H bonds to form heptyl radicals

$$C_7H_{16} \rightarrow H + C_7H_{15}$$

Furthermore, smaller radicals (H⁺, CH⁺₃, C₂H⁺₅ and C₃H⁺₇) will abstract a hydrogen radical from n-heptane to form more light saturated molecules (H₂, CH₄, C₂H₆, C₃H₈) and heptyl radicals Heptyl radicals will in turn undergo fast isomerization reactions followed immediately by unimolecular decompositions to form olefins and some lighter alkyl radicals

$$R \cdot + C_{7}H_{16} \longrightarrow RH + 1-C_{7}H_{15}^{*}$$

$$(R \cdot = H CH_{3}^{*}, C_{2}H_{5}^{*} \text{ and } 1-C_{3}H_{7}^{*})$$

$$4 - C_{7}H_{15}^{*} \longrightarrow 1-C_{5}H_{10} + C_{2}H_{5}^{*}$$

$$1 - C_{7}H_{15}^{*} \longrightarrow C_{2}H_{4} + \begin{pmatrix} 1-C_{5}H_{11}^{*} & C_{2}H_{4} + 1-C_{3}H_{7}^{*} \\ 2-C_{5}H_{11}^{*} & C_{3}H_{6} + C_{2}H_{5}^{*} \\ 1 - C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{15} & 1-C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{15} & 1-C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{7}H_{15}^{*} & C_{3}H_{6} + C_{2}H_{5}^{*} \\ 1 - C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{15} & 1-C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{15} & C_{7}H_{15} & C_{7}H_{15} + C_{7}H_{15}^{*} \\ 1 - C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{15} & C_{7}H_{15} + C_{7}H_{15} + C_{7}H_{15}^{*} \\ 1 - C_{6}H_{12} + CH_{3}^{*} \\ 1 - C_{6}H_{15} & C_{7}H_{15} + C_{7}H_{15} \\ 1 - C_{6}H_{15} & C_{7}H_{15} + C_{7}H_{15} + C_{7}H_{15} + C_{7}H_{15} \\ 1 - C_{6}H_{15} & C_{7}H_{15} + C_{$$

Also, olefins participate in secondary reactions at higher conversions, these are

(1) addition of light radicals to alkenes

 $\mathbf{R''} + \mathbf{C}_N \mathbf{H}_{2N} \to \mathbf{R'C}_N \mathbf{H}_{2N}^{\cdot} \to (\text{lighter olefins} + \text{radicals})$ $(\mathbf{R''} = \mathbf{H}, \mathbf{CH}_3)$

(11) H-abstractions from alkenes by reactive radicals

$$\mathbf{R''} + \mathbf{C}_N \mathbf{H}_{2N} \to \mathbf{R'H} + \mathbf{C}_N \mathbf{H}_{2N-1}$$

olefins

 $C_N H_{2N-1} \rightarrow \langle \text{di-olefins} + R' \\ \text{cyclo-olefins} \rangle$

 $(R'' = H, CH_3, C_2H_5, R''' = H, C_2H_5, C_2H_3, C_3H_5)$

The alkenyl radicals may undergo dehydrocyclization reactions to form cyclo-olefins which can in turn dehydrogenate to form aromatics The formation of benzene as a secondary product in n-heptane pyrolysis [12,18] supports this assertion

Another reaction that may lead to benzene is Diels-Alder reaction of the form

$$C_2H_4 + C_4H_6 \longrightarrow c-C_6H_{10} \longrightarrow c-C_6H_8 \longrightarrow H_2$$

This concerted molecular reaction can occur as fast as free radical reactions even with a smaller amount of 1,3-butadiene [35] The proposed model is shown in Table 1 Some molecular reactions are included in the model because their exclusion will lead to misleading conclusions of rate parameters, particularly for olefins and di-olefins [21] In developing this model, an initial minimum set of ER is used and later expanded by addition of new ER until experimental and predicted distributions have shown good agreement

SELECTION OF KINETIC RATE PARAMETERS

Kinetic rate parameters of the ER listed in Table 1 are compiled from several sources Large numbers of accurate and reliable rate parameters of

TABLE 1

Mechanistic model for the pyrolysis of n-heptane

No	Reaction		$\log_{10} A$	E
Initiatio	on	····		
1	CH ₄	\rightarrow H + CH ₃	15 3	104000
2	C_2H_6	\rightarrow H + C ₂ H ₅	16 0	98000
3	C_2H_6	$\rightarrow CH_3 + CH_3$	16 0	88000
4	C_3H_8	\rightarrow H+1-C ₃ H ₇	16 0	98000
5	C_3H_8	$\rightarrow CH_3 + C_2H_5$	16 3	85000
6	C_4H_{10}	\rightarrow CH ₃ + 1-C ₃ H ₇	16 3	85000
7	$C_{4}H_{10}$	$\rightarrow C_2H_5 + C_2H_5$	16 3	81400
8	$C_{6}H_{14}$	\rightarrow CH ₃ + 1-C ₅ H ₁₁	17 2	85400
9	C_6H_{14}	$\rightarrow C_2H_5 + 1 - C_4H_9$	16 5	82400
10	C_6H_{14}	\rightarrow 1-C ₃ H ₇ + 1-C ₃ H ₇	16 1	82400
11	$C_{7}H_{16}$	\rightarrow CH ₃ + 1-C ₆ H ₁₃	17 4	85040
12	C_7H_{16}	$\rightarrow C_2H_5 + 1 - C_5H_{11}$	16 8	82300
13	$C_{7}H_{16}$	\rightarrow 1-C ₃ H ₇ + 1-C ₄ H ₉	16 8	81800
14	C_2H_4	\rightarrow H + C ₂ H ₃	130	108000
15	C ₃ H ₆	\rightarrow H + C ₃ H ₅	150	88000
16	C_3H_6	$\rightarrow CH_3 + C_2H_3$	15 5	89000
17	$1-C_4H_8$	$\rightarrow CH_3 + C_3H_5$	16 0	74000
18	$1-C_4H_8$	\rightarrow H+1-M-AL	160	90000
19	$1-C_5H_{10}$	$\rightarrow C_2H_5 + C_3H_5$	16 6	74800
H-Abstr	raction			
20	$H + CH_4$	\rightarrow H ₂ + CH ₃	11 1	12600
21	$H + C_2 H_6$	\rightarrow H ₂ + C ₂ H ₅	11 1	9700
22	$H + C_3 H_8$	\rightarrow H ₂ + 1-C ₃ H ₇	111	9700
23	$H + C_3 H_8$	\rightarrow H ₂ + 2-C ₃ H ₇	11 0	8300
24	$H + C_4 H_{10}$	\rightarrow H ₂ + 1-C ₄ H ₉	11 1	9700
25	$H + C_4 H_{10}$	\rightarrow H ₂ + 2-C ₄ H ₉	11 0	8400
26	$H + C_6 H_{14}$	\rightarrow H ₂ + 1-C ₆ H ₁₃	11 0	9700
27	$H + C_6 H_{14}$	\rightarrow H ₂ + 2-C ₆ H ₁₃	10 7	8400
28	$H + C_6 H_{14}$	\rightarrow H ₂ + 3-C ₆ H ₁₃	10 4	8400
29	$H + C_7 H_{16}$	\rightarrow H ₂ + 1-C ₂ H ₁₅	110	9700
30	$H + C_2 H_4$	\rightarrow H ₂ + C ₂ H ₃	85	4500
31	$H + C_3 H_6$	$\rightarrow H_2 + C_3 H_5$	85	4500
32	$H+1-C_4H_8$	\rightarrow H ₂ + 1-M-AL	85	4500
33	$H + 1 - C_4 H_8$	\rightarrow H ₂ + 3-BEN	91	11600
34	$H + 1 - C_5 H_{10}$	\rightarrow H ₂ + 1-E-AL	77	4500
35	$H + 1 - C_5 H_{10}$	$\rightarrow H_2 + 1$ -M-BEN	85	11000
36	$H + 1 - C_5 H_{10}$	$\rightarrow H_2^- + 4$ -PEN	90	11600
37	$CH_3 + H_2$	$\rightarrow C\tilde{H}_{4} + H$	95	10200
38	$CH_3 + CH_4$	$\rightarrow CH_4 + CH_3$	86	14000
39	$CH_3 + C_2H_6$	$\rightarrow CH_4 + C_2H_5$	90	10600
40	$CH_3 + C_3H_8$	$\rightarrow CH_4 + 1 - C_3H_7$	90	11500
41	$CH_3 + C_3H_8$	$\rightarrow CH_4 + 2 - C_3H_7$	89	10100
42	$CH_3 + C_4 H_{10}$	$\rightarrow CH_4 + 1 - C_4H_9$	91	11600
43	$CH_{3} + C_{4}H_{10}$	$\rightarrow CH_4 + 2 - C_4 H_9$	89	9500
44	$CH_3 + C_6H_{14}$	$\rightarrow CH_4 + 1 - C_6H_{13}$	91	11600

(continued)

No	Reaction		$\log_{10} A$	E
45	$CH_3 + C_6H_{14}$	$\rightarrow CH_4 + 2 - C_6 H_{13}$	89	9500
46	$CH_3 + C_6H_{14}$	$\rightarrow CH_4 + 3 - C_6 H_{13}$	86	9500
47	$CH_3 + C_7 H_{16}$	$\rightarrow CH_4 + 1 - C_7 H_{15}$	88	11600
48	$CH_3 + C_2H_4$	$\rightarrow CH_4 + C_2H_3$	86	8000
49	$CH_3 + C_3H_6$	$\rightarrow CH_4 + C_3H_5$	73	4500
50	$CH_{3} + 1 - C_{4}H_{8}$	$\rightarrow CH_4 + 1 - M - AL$	73	4500
51	$CH_{3} + 1 - C_{4}H_{8}$	$\rightarrow CH_4 + 3$ -BEN	90	11600
52	$CH_3 + 1 - C_5 H_{10}$	$\rightarrow CH_4 + 1-E-AL$	77	4500
53	$CH_3 + 1 - C_5 H_{10}$	\rightarrow CH ₄ + 1-M-BEN	89	9500
54	$CH_3 + 1 - C_5 H_{10}$	$\rightarrow CH_4 + 4$ -PEN	91	11600
55	$C_2H_5 + H_2$	$\rightarrow C_2 H_6 + H$	85	10800
56	$C_2H_5 + CH_4$	$\rightarrow C_2 H_6 + CH_3$	80	11000
57	$C_{2}H_{5} + C_{2}H_{6}$	$\rightarrow C_2 H_6 + C_2 H_5$	90	11500
58	$C_{2}H_{5} + C_{3}H_{8}$	$\rightarrow C_2 H_6 + 1 - C_3 H_7$	91	12600
59	$C_{2}H_{5} + C_{3}H_{8}$	$\rightarrow C_2 H_6 + 2 - C_3 H_7$	89	10400
60	$C_{2}H_{5} + C_{4}H_{10}$	$\rightarrow C_2 H_6 + 1 - C_4 H_9$	93	12600
61	$C_2H_5 + C_4H_{10}$	$\rightarrow C_2 H_6 + 2 - C_4 H_9$	8 65	10400
62	$C_{2}H_{5} + C_{6}H_{14}$	$\rightarrow C_2 H_6 + 1 - C_6 H_{11}$	80	12600
63	$C_{2}H_{5} + C_{6}H_{14}$	$\rightarrow C_2 H_6 + 2 - C_6 H_{13}$	80	10400
64	$C_{2}H_{5} + C_{6}H_{14}$	$\rightarrow C_{2}H_{6} + 3 - C_{6}H_{13}$	77	10400
65	$C_2H_3 + C_2H_4$	$\rightarrow C_2 H_6 + C_2 H_3$	85	11400
66	$C_{2}H_{4} + C_{2}H_{4}$	$\rightarrow C_2 H_{\epsilon} + C_2 H_{\epsilon}$	73	4500
67	$C_{2}H_{4}+1-C_{4}H_{6}$	$\rightarrow C_2 H_{\zeta} + 1 - M - AL$	73	4500
68	$C_{2}H_{4} + 1 - C_{4}H_{6}$	$\rightarrow C_2 H_4 + 3$ -BEN	90	11600
69	$C_{2}H_{4} + 1 - C_{4}H_{10}$	$\rightarrow C_2 H_6 + 1-E-AL$	73	4500
70	$C_{2}H_{5} + 1 - C_{5}H_{10}$	$\rightarrow C_2 H_6 + 1$ -M-BEN	87	9800
71	$C_{2}H_{5} + 1 - C_{5}H_{10}$	$\rightarrow C_2 H_6 + 4$ -PEN	84	9800
72	$1-C_{2}H_{7}+H_{2}$	$\rightarrow C_1 H_0 + H$	98	14600
73	$1-C_{3}H_{7}+CH_{4}$	$\rightarrow C_{1}H_{8} + CH_{1}$	83	15000
74	$1-C_{1}H_{7}+C_{2}H_{6}$	$\rightarrow C_1 H_1 + C_2 H_5$	80	10000
75	$1 - C_{3}H_{7} + C_{3}H_{8}$	$\rightarrow C_1 H_8 + 2 - C_1 H_7$	80	10000
76	$1 - C_3 H_7 + C_4 H_{10}$	$\rightarrow C_3 H_8 + 2 - C_4 H_9$	83	10200
77	$1 - C_3 H_7 + C_6 H_{14}$	$\rightarrow C_3 H_8 + 1 - C_6 H_{13}$	80	12600
78	$1-C_{3}H_{7}+C_{6}H_{14}$	$\rightarrow C_3H_8 + 2 - C_6H_{13}$	80	10400
79	$1 - C_3 H_7 + C_6 H_{14}$	$\rightarrow C_{3}H_{8} + 3 - C_{6}H_{13}$	77	10400
80	$1 - C_3 H_7 + C_2 H_4$	$\rightarrow C_3H_8 + C_2H_3$	80	15000
81	$1 - C_3 H_7 + C_3 H_6$	$\rightarrow C_3H_8 + C_3H_5$	80	9200
82	$C_2H_3 + H_2$	$\rightarrow C_2 H_4 + H$	99	7400
83	$C_2H_3 + CH_4$	$\rightarrow C_2 H_4 + CH_3$	90	16000
84	$C_2H_3 + C_2H_6$	$\rightarrow C_2 H_4 + C_2 H_5$	90	16000
85	$C_{2}H_{3} + C_{3}H_{8}$	$\rightarrow C_2 H_4 + 1 - C_3 H_7$	95	18800
86	$C_2H_3 + C_3H_8$	$\rightarrow C_2H_4 + 2 - C_3H_7$	90	16200
87	$C_2H_3 + C_4H_{10}$	$\rightarrow C_2H_4 + 1 - C_4H_9$	90	18800
88	$C_2H_3 + C_4H_{10}$	$\rightarrow C_2H_4 + 2-C_4H_9$	89	16800
89	$C_2H_3 + C_6H_{14}$	$\rightarrow C_2H_4 + 1 - C_6H_{13}$	90	18000
90	$C_2H_3 + C_6H_{14}$	$\rightarrow C_2H_4 + 2 - C_6H_{13}$	89	16800
91	$C_2H_3 + C_6H_{14}$	$\rightarrow C_2H_4 + 3 - C_6H_{13}$	89	16800
92	$C_2H_3 + C_3H_6$	$\rightarrow C_2H_4 + C_3H_5$	95	14500
93	$C_2H_3 + 1 - C_4H_8$	$\rightarrow C_2H_4 + 1-M-AL$	80	13000
94	$C_2H_3 + 1 - C_5H_{10}$	$\rightarrow C_2H_4 + 1-E-AL$	90	13000

TABLE 1 (continued)

No	Reaction		$\log_{10} A$	E
95	$C_2H_3 + 1 - C_5H_{10}$	$\rightarrow C_2H_4 + 1$ -M-BEN	90	16000
96	$C_2H_3 + 1 - C_5H_{10}$	$\rightarrow C_2H_4 + 4-PEN$	90	16000
97	$C_{3}H_{5} + H_{2}$	$\rightarrow C_3 H_6 + H$	99	7400
98	$C_3H_5 + CH_4$	$\rightarrow C_3H_6 + CH_3$	90	16000
99	$C_{3}H_{5} + C_{2}H_{6}$	$\rightarrow C_3H_6 + C_2H_5$	90	16000
100	$C_{3}H_{5} + C_{3}H_{8}$	$\rightarrow C_3H_6 + 1-C_3H_7$	90	18800
101	$C_{3}H_{5} + C_{3}H_{8}$	$\rightarrow C_3H_6 + 2 - C_3H_7$	89	16200
102	$C_{3}H_{5} + C_{4}H_{10}$	$\rightarrow C_3H_6 + 1 - C_4H_9$	86	18800
103	$C_{3}H_{5} + C_{4}H_{10}$	$\rightarrow C_3H_6 + 2 - C_4H_9$	89	16800
104	$C_{3}H_{5} + C_{6}H_{14}$	$\rightarrow C_3H_6 + 1 - C_6H_{13}$	86	18800
105	$C_{3}H_{5} + C_{6}H_{14}$	$\rightarrow C_3H_6 + 2 - C_6H_{13}$	89	16800
106	$C_{3}H_{5} + C_{6}H_{14}$	$\rightarrow C_3H_6 + 3 - C_6H_{13}$	89	16800
107	$C_{3}H_{5} + C_{2}H_{4}$	$\rightarrow C_3 H_6 + C_2 H_3$	95	18000
108	$C_{3}H_{5} + C_{3}H_{6}$	$\rightarrow C_3 H_6 + C_3 H_5$	90	14500
109	$C_{3}H_{5} + 1 - C_{4}H_{8}$	$\rightarrow C_3H_6 + 1-M-AL$	79	13500
110	$C_{3}H_{5} + 1 - C_{5}H_{10}$	$\rightarrow C_3 H_6 + 1$ -E-AL	90	10500
111	$C_{3}H_{5} + 1 - C_{5}H_{10}$	$\rightarrow C_3 H_6 + 1$ -M-BEN	90	13500
112	$C_3H_5 + 1 - C_5H_{10}$	$\rightarrow C_3 H_6 + 4$ -PEN	90	13500
Addition				
113	$H + C_2 H_4$	$\rightarrow C_2 H_5$	106	1600
114	$H + C_3 H_6$	$\rightarrow 1 \cdot C_3 H_7$	99	2900
115	$H + C_3 H_6$	$\rightarrow 2 - C_2 H_7$	99	1200
116	$H+1-C_4H_8$	$\rightarrow 1-C_{4}H_{9}$	99	2000
117	$H+1-C_{A}H_{a}$	$\rightarrow 2 - C_4 H_0$	99	500
118	$H + 1 - C_{5}H_{10}$	$\rightarrow 1-C_sH_{11}$	99	2000
119	$H + 1 - C_5 H_{10}$	$\rightarrow 2 \cdot C_5 H_{11}$	99	500
120	$H+C_2H_2$	$\rightarrow C_2 H_3$	10 6	1300
121	$CH_3 + C_2H_4$	$\rightarrow 1 \cdot C_3 H_7$	85	7800
122	$CH_3 + C_3H_6$	$\rightarrow 2 \cdot C_{4} H_{9}$	85	7400
123	$CH_3 + C_3H_6$	$\rightarrow 1-C_4H_9$	85	9100
124	$CH_3 + 1 - C_4 H_8$	$\rightarrow 3 - C_5 H_{11}$	83	7200
125	$CH_{3} + 1 - C_{4}H_{8}$	$\rightarrow 2 - M - B$	83	9200
126	$CH_{3} + 1 - C_{5}H_{10}$	\rightarrow 3-C ₆ H ₁₃	83	7200
127	CH ₃ -1-C ₅ H ₁₀	\rightarrow 2-M-P	83	9100
128	$CH_3 + C_2H_2$	$\rightarrow C_3 H_5$	74	7700
129	$C_2H_5 + C_2H_4$	$\rightarrow 1 - C_4 H_9$	7 33	7600
130	$C_2H_5 + C_3H_6$	$\rightarrow 2 \cdot C_5 H_{11}$	71	7500
131	$C_{2}H_{5} + C_{3}H_{6}$	$\rightarrow 2 - M - B$	71	9200
132	$C_2H_5 + 1 - C_4H_8$	\rightarrow 3-C ₆ H ₁₃	71	7500
133	$C_2H_5 + 1-C_4H_8$	$\rightarrow 2-E-B$	71	9200
134	$C_2H_5 + 1-C_5H_{10}$	\rightarrow 4-C ₇ H ₁₅	71	7500
135	$C_2H_5 + 1 - C_5H_{10}$	→ 2-E-P	71	8300
136	$C_2H_5 + C_2H_2$	\rightarrow 1-M-AL	74	7000
137	$1 - C_3 H_7 + C_2 H_4$	$\rightarrow 1-C_5H_{11}$	74	8000
138	$1 - C_3 H_7 + C_3 H_6$	$\rightarrow 2 \cdot C_6 H_{13}$	91	8600
139	$C_2H_3 + C_2H_4$	\rightarrow 3-BEN	70	8000
140	$C_2H_3 + C_3H_6$	\rightarrow 1-M-BEN	70	8000
141	$C_2H_3 + 1 - C_4H_8$	\rightarrow 1-E-BEN	70	8000

(continued)

No	Reaction		$\log_{10} A$	E
142	$C_3H_5+C_2H_4$	\rightarrow 4-PEN	77	8000
143	$C_{3}H_{5} + C_{3}H_{6}$	\rightarrow 1-M-PEN	70	8000
	5 5 5 0			
Radical is	omerization			
144	$1 - C_5 H_{11}$	$\rightarrow 2 - C_5 H_{11}$	11 0	20000
145	$2 - C_5 H_{11}$	$\rightarrow 1-C_5H_{11}$	11 1	22900
146	$1-C_6H_{13}$	$\rightarrow 2 - C_6 H_{13}$	11 0	13700
147	$2 - C_6 H_{13}$	$\rightarrow 1 - C_6 H_{13}$	11 1	16600
148	$1-C_6H_{13}$	\rightarrow 3-C ₆ H ₁₃	11 0	20000
149	$3-C_6H_{13}$	$\rightarrow 1 - C_6 H_{13}$	11 1	22900
150	$1 - C_7 H_{15}$	\rightarrow 3-C ₇ H ₁₅	92	11100
151	$3 - C_7 H_{15}$	$\rightarrow 1-C_7H_{15}$	11 1	22900
152	$1 - C_7 H_{15}$	\rightarrow 4-C ₇ H ₁₅	11 1	20500
153	$4 - C_7 H_{15}$	$\rightarrow 1-C_7H_{15}$	11 1	22900
154	$2 - C_7 H_{15}$	\rightarrow 3-C ₇ H ₁₅	111	13900
155	$3 - C_7 H_{15}$	$\rightarrow 2 - C_7 H_{15}$	11 2	16800
Decompos	ation			
156	C ₂ H ₆	\rightarrow H + C ₂ H	139	41700
157	1-C ₂ H ₂	\rightarrow H + C ₂ H ₄	13 2	38000
158	1-C ₂ H ₂	$\rightarrow CH_2 + C_2H_4$	13 2	32000
159	2-C-H-	\rightarrow H + C ₂ H ₂	13.6	40300
160	1-C.H.	\rightarrow H + 1-C H	13.0	38000
161	1-C.H.	$\rightarrow C_{a}H_{a} + C_{a}H_{a}$	13.6	29000
162	1-C.H.	$\rightarrow C_2H_2 + CH_2$	12.1	21700
163	2-C.H.	\rightarrow H+1-C.H.	13 3	39800
164	$2 C_4 H_9$	$\rightarrow CH_{2} + C_{2}H_{2}$	13.4	31900
165	1-C.H.	\rightarrow H+1-C H.	13 7	36600
165	1-C H	$\rightarrow CH + CH$	130	33000
167	1-C H	$\rightarrow 1-C H + C H$	12.6	28700
168	2 - C H	$\rightarrow C H + C H$	12.0	23700
160	3-C H	$\rightarrow CH + 1 - CH$	12.0	31500
107	$2 M_{\rm B}$	$\rightarrow CH_3 + 1 - C_4 H_8$	135	31500
170	2-M-B	$\rightarrow C_1H_1 + C_2H_3$	12.5	27900
172		$\rightarrow 1CH + CH$	12.5	27900
172	2-C H	$\rightarrow 1-C_1H_2 + C_2H_4$	12.6	27900
174	2-C ₆ H ₁₃	$\rightarrow C H + 1 - C H$	12.0	27900
175	3 C H	$\rightarrow CH \pm 1CH$	12.0	21500
175	$^{5-C_{6}\Pi_{13}}$	$\rightarrow 1$ C H \pm C H	134	27900
177	2-101-1 2-16 B	$\rightarrow C H + 1 - C H$	12.5	27900
179		$\rightarrow 1$ C H $\rightarrow 1$ C H	12.5	27300
170	2-C H	$\rightarrow C H + 1 - C H$	13.0	29100
190	$2 - C_7 \Pi_{15}$	$\rightarrow CH \pm 1CH$	13 1	23500
100	3 C H	$\rightarrow 1$ C H ± 1 C H	12.5	29500
187	4-C H	$\rightarrow C_1H_1 \pm 1_1C_1H_1$	12.5	27900
183	7-F-P	$\rightarrow C_2 H_2 + 1_2 C H$	12.5	27900
18/	2-L-I 2-E-P	$\rightarrow 1-C H \pm 1-C H$	12 5	27900
185	<u>2-с-</u> г С.Н	\rightarrow H+C. H	90	31500
186	C.H	$\rightarrow CH_1 + CH_2$	10.5	36200
187	-3115 1-M-AI	\rightarrow H+C H	14.8	49300
188	1-M-AL	$\rightarrow C_2 H_2 + C_2 H_2$	137	38000
		· · · · · · · · · · · · · · · · · · ·		20000

TABLE 1 (continued)

No	Reaction		$\log_{10} A$	Ε
189	3-BEN	$\rightarrow C_2H_3 + C_2H_4$	130	34000
190	1-E-AL	$\rightarrow CH_3 + C_4H_6$	130	32000
191	1-M-BEN	$\rightarrow C_2H_3 + C_3H_6$	130	34000
192	4-PEN	$\rightarrow C_3H_5 + C_2H_4$	130	34000
193	1-M-PEN	$\rightarrow C_3H_5 + C_3H_6$	13 5	26000
194	1-E-BEN	$\rightarrow CH_3 + C_5H_8$	13 0	34000
Terminati	on			
195	H + H	\rightarrow H ₂	90	0 0
196	$H + C_2 H_3$	$\rightarrow C_2 H_4$	10 0	0 0
197	$H + C_3 H_5$	$\rightarrow C_3 H_6$	10 3	0 0
198	$CH_3 + CH_3$	$\rightarrow C_2 H_6$	10 7	0 0
199	$CH_3 + C_2H_5$	$\rightarrow C_3 H_8$	10 5	0 0
200	$CH_3 + C_2H_3$	$\rightarrow C_3 H_6$	10 0	0 0
201	$CH_3 + C_3H_5$	$\rightarrow 1 - C_4 H_8$	10 3	0 0
202	$C_{2}H_{5} + C_{2}H_{5}$	$\rightarrow C_4 H_{10}$	96	0 0
203	$C_{2}H_{5} + C_{2}H_{3}$	$\rightarrow 1 - C_4 H_8$	90	0 0
204	$C_{2}H_{5} + C_{3}H_{5}$	$\rightarrow 1-C_5H_{10}$	95	0 0
205	$\tilde{C_2H_5} + 1-E-AL$	$\rightarrow TAR$	90	0 0
206	$1 - C_3 H_7 + 1 - C_3 H_7$	$\rightarrow C_6 H_{14}$	95	0 0
207	$C_2H_3 + C_2H_3$	$\rightarrow C_4 H_6$	10 1	0 0
208	$C_{2}H_{3} + C_{3}H_{5}$	$\rightarrow C_5 H_8$	90	0 0
209	$C_{2}H_{4} + 1 - M - AL$	$\rightarrow C_6 H_{10}$	90	0 0
210	$C_{2}H_{3} + C_{3}H_{5}$	$\rightarrow C_6 H_{10}$	95	0 0
211	$C_{3}H_{5} + 1$ -M-AL	→ TĂR	85	0 0
212	$C_3H_5 + 1-E-AL$	\rightarrow TAR	85	0 0
213	1 - M - AL + 1 - M - AL	→ TAR	85	0 0
214	1-M-AL+1-E-AL	→ TAR	85	0 0
215	1-E-AL+1-E-AL	\rightarrow TAR	85	0 0
Dispropor	rtionation			
216	$CH_3 + C_2H_5$	$\rightarrow CH_4 + C_2H_4$	84	0 0
217	$CH_3 + C_2H_3$	$\rightarrow CH_4 + C_2H_2$	90	0 0
218	$CH_3 + C_3H_5$	$\rightarrow CH_4 + C_3H_4$	90	0 0
219	$CH_3 + 1-M-AL$	$\rightarrow CH_4 + C_4H_6$	99	0 0
220	$C_2H_5 + C_2H_5$	$\rightarrow C_2 H_6 + C_2 H_4$	77	0 0
221	$C_{2}H_{5}+C_{2}H_{3}$	$\rightarrow C_2 H_6 + C_2 H_2$	80	0 0
222	$C_{2}H_{5}+C_{2}H_{3}$	$\rightarrow C_2 H_6 + C_2 H_4$	8 5	0 0
223	$C_2H_5 + C_3H_5$	$\rightarrow C_2H_6 + C_3H_4$	86	0 0
224	$C_{2}H_{5} + C_{3}H_{5}$	$\rightarrow C_2H_6 + C_3H_6$	86	0 0
225	$C_2H_5 + 1$ -M-AL	$\rightarrow C_2 H_6 + C_4 H_6$	91	0 0
226	$C_2H_5 + 1-M-AL$	$\rightarrow C_2H_4 + 1 - C_4H_8$	85	0 0
227	$C_2H_3 + C_2H_3$	$\rightarrow C_2H_4 + C_2H_2$	95	0 0
228	$C_2H_3 + C_3H_5$	$\rightarrow C_2H_4 + C_3H_4$	90	0 0
229	$C_2H_3 + 1-M-AL$	$\rightarrow C_2H_4 + C_4H_6$	90	0 0
230	$C_{3}H_{5} + C_{3}H_{5}$	$\rightarrow C_3H_6 + C_3H_4$	95	0 0
231	$C_3H_5 + 1-M-AL$	$\rightarrow C_3H_6 + C_4H_6$	98	0 0
232	$C_3H_5 + 1$ -M-AL	$\rightarrow C_3H_4 + 1 - C_4H_8$	90	0 0
233	1-M-AL+1-M-AL	$\rightarrow C_4H_6 + 1-C_4H_8$	95	0 0

(continued)

TABLE 1 (continued)

No	Reaction		$\log_{10} A$	Ε
Aromat	zation			
234	$C_{4}H_{6} + C_{2}H_{4}$	\rightarrow CH	75	27500
235	$C_4H_6 + C_3H_6$	\rightarrow MCH	78	27500
236	$C_4H_6 + 1 - C_4H_8$	\rightarrow ECH	74	30000
237	$C_4H_6 + C_4H_6$	\rightarrow VCH	74	26800
238	СН	\rightarrow H ₂ + CHD	11 5	50900
239	MCH	\rightarrow H ₂ + MCHD	10 5	49500
240	MCH	$\rightarrow CH_4 + CHD$	136	61100
241	ECH	\rightarrow H ₂ + ECHD	10 5	49500
242	VCH	\rightarrow H ₂ + VCHD	10 6	48400
243	CHD	\rightarrow H ₂ + benzene	12 0	42500
244	MCHD	\rightarrow H ₂ + toluene	12 5	43000
245	ECHD	$\rightarrow H_2^- + E$ -benzene	12 5	43000
246	VCHD	\rightarrow H ₂ ⁻ + styrene	12 0	43000

Nomenclature

0 1 1	NT
Symbol	Name
1-M-AL	1-Methyl-allyl
3-BEN	3-Butenyl
1-E-AL	1-Ethyl-allyl
1-M-BEN	1-Methyl-3-butenyl
4-PEN	4-Pentenyl
2-M-B	2-Methyl-3-butenyl
2-M-P	2-Methyl-4-pentenyl
2-E-B	2-Ethyl-3-butenyl
2-E-P	2-Ethyl-4-pentenyl
1-E-BEN	1-Ethyl-3-butenyl
1-M-PEN	1-Methyl-4-pentenyl
CH	Cyclohexene
MCH	Methylcyclohexene
ECH	Ethylcyclohexene
VCH	Vinylcyclohexene
CHD	Cyclohexadiene
MCHD	Methylcyclohexadiene
ECHD	Ethylcyclohexadiene
VCHD	Vinylcyclohexadiene

radical reactions of n-alkanes are now available in the literature [7,9,13-15]Kunugi et al [22] also tabulated rate constants of free radical reactions of olefins However, many of these parameters were compiled at low temperatures Sundaram and Froment [9], on the other hand, listed the rate parameters of the pyrolysis reactions of light hydrocarbons (C_2-C_4 alkanes) at high conversions Rate parameters of ER not available in the literature can be estimated on the basis of the general methods proposed by Benson [23], some of the listed parameters used in the present work were estimated Furthermore, it is possible to estimate rate parameters by trial and error [24] The present authors had applied a non-linear regression technique in optimizing the rate parameters of molecular reactions in modeling cyclohexane pyrolysis [25], however, this method cannot be used here in view of the large number of ER being considered Also, some of these rate parameters considered were modified within reasonable limits

SIMULATION

In simulating the proposed mechanistic model, the system of ordinary differential equations (ODEs) are numerically integrated, the ODEs are the continuity equations of the species (radical and molecular) participating in the pyrolysis reactions and are given by

$$\frac{\mathrm{d}C_{\iota}}{\mathrm{d}t} = \sum_{j=1}^{N} S_{\iota j} r_{j} \qquad \iota = 1, \, 2, \, 3, \, M$$
(1)

where

$$r_{j} = k_{j} \prod_{i=1}^{M} C_{i}^{-S_{ij}} - k_{j}^{\prime} \prod_{i=1}^{M} C_{i}^{S_{ij}}$$
(2)

and $S_{ij} < 0$ for reactants, $S_{ij} > 0$ for products

The ODEs generated for mechanistic models are non-linear and are also "stiff" as a result of the wide disparity between the concentrations of molecular and radical species $(10^{-2} \text{ and } 10^{-10} \text{ M}, \text{ respectively})$ Considering the large number of ER in the proposed model, the formulation of eqns (1) and (2) was performed using a "chemical compiler", this was necessary to avoid inaccurate modeling of the hydrocarbon pyrolysis reactions

Numerous techniques are available in the literature for the numerical integration of stiff ODEs [26–29], Gear's DIFSUB [26] and Deuflhard and coworkers' "LARKIN" [27] stand out as the best The latter program package was used in the present work because its chemical compiler can generate all pertinent information (eqns (1) and (2)) together with the associated Jacobian matrix necessary for simulation. In order to forestall the complex mathematics often encountered in the numerical integration of set of stiff ODEs, some workers [5,8,30] have applied the QSSA (quasi steady state assumption) to the radical species. This method converts the ODEs representing radicals to algebraic equations (eqn. (3)) which are then solved simultaneously with the remaining ODEs (of molecular species).

$$\frac{dC_i}{dt} = \sum_{j=1}^{N} S_{ij} r_j = 0$$
(3)

Though the QSSA approach has been questioned by some authors [9,33], Edelson and Allara [33] reported a "surprising" agreement of the results predicted by Gear's method [26] and Snow's QSSA approach [30] Dente et al [32] and Come [31,34] have supplied detailed outlines on techniques that could be used in solving sets of stiff ODEs, these techniques involve the use of PSSA (pseudo steady state assumption) approach Dente et al [32] explained further that the PSSA approach can be used for actual calculations, but that the main problem in its applications, is to have a suitable method to solve the resulting algebraic non-linear equations for radical concentrations

The PSSA approach was not applied in the present study, instead a complete simultaneous numerical integration of the system of ODEs was carried out

RESULTS AND DISCUSSION

The proposed mechanistic model comprising 246 ER (Table 1) was simulated on an IBM 370/168 computer Table 2 shows the comparison of experimental and simulated product distributions, the major product distributions showed fairly good agreements

	$\tau = 0.8 \text{ s}$		$\tau = 0.9 \text{ s}$		$\tau = 1 \ 00 \ s$	
	Exp	Sım	Exp	Sım	Exp	Sım
740 ° C						
CH₄	9 55	18 03	10 07	18 67	14 17	19 25
C_2H_4	30 44	51 64	35 26	50 70	36 78	49 72
C ₃ H ₆	9 86	4 30	9 95	4 10	9 85	3 91
$1-C_4H_8$	1 60	0 68	2 85	0 60	0 89	0 55
$1,3-C_4H_6$	2 40	2 00	3 20	1 96	1 59	1 93
760 ° C						
CH₄	12 99	19 40	15 48	20 07	18 72	20 66
C_2H_4	38 36	48 55	40 30	46 95	39 24	45 40
C_3H_6	8 90	2 94	8 74	2 70	9 29	2 47
$1-C_4H_8$	0 89	0 33	1 12	0 29	0 94	0 26
$1,3-C_4H_6$	1 51	1 67	1 83	1 65	2 1 5	1 61
	$\tau = 0.7 \text{ s}$		$\tau = 0.8 \text{ s}$		$\tau = 0.9$ s	
780 ° C						
CH₄	12 11	19 86	19 16	20 54	20 04	21 12
C ₂ H ₄	35 86	46 21	39 37	44 31	40 19	42 71
C ₃ H ₆	8 57	1 95	7 53	1 70	8 02	1 50
1-C ₄ H ₈	0 82	0 20	0 42	0 15	1 16	0 13
1,3-C ₄ H ₆	2 22	1 37	1 51	1 28	1 92	1 18

TABLE 2

Comparison of experimental and simulated product distributions (mol %)

Fig 1 Simulated radical concentrations in n-heptane pyrolysis at 700 °C

Figures 1–3 show the variations of the radical concentrations with reaction time CH₃, C₂H₅, C₃H₅ and C₄H₇ predominate in n-heptane pyrolysis The initial rapid increase in the concentrations of H, CH₃, C₂H₅ and 1-C₃H₇ with reaction time is due to the initiation reactions of n-heptane Also, C₃H₅, C₄H₇ and C₂H₃ appear in the pyrolysis system much later than other radicals, their appearance marks the onset of secondary reactions of the primary products and hence of inhibition and self-inhibition in the pyrolysis of n-heptane Some of the key reactions responsible for inhibitions

Fig 2 Simulated radical concentrations in n-heptane pyrolysis at 720 °C

Fig 3 Simulated radical concentrations in n-heptane pyrolysis at 760°C

are the H-abstractions from primary olefinic products $(C_3H_6, 1-C_4H_8, etc)$ by light reactive radicals to form relatively more stable allylic radicals

 $R'+C_3H_6 \rightarrow RH + C_3H'_5$ $R'+1-C_4H_8 \rightarrow RH + C_4H'_7$ (R'= H', CH'_3, C_2H'_5)

Furthermore, it is clear (Figs 1–3) that radical concentrations in hydrocarbon pyrolysis never really attain true steady states However, a few radicals (H', CH₃, C₂H₅ and 1-C₃H₇) appear to go into steady states during part of the reaction time regime, immediately after the initial rapid increase in their concentrations Consequently, the PSSA approach is not appropriate, the availability of fast computers and highly efficient numerical techniques for handling stiff ODEs makes its use unnecessary Hindmarsh's [36] "GEARS" and Deuflhard and coworkers' [27] "LARKIN" are two of the currently available program packages that contain very fast stiff integrators which are very well suited for handling stiff ODEs arising from complex chemical reaction systems.

REFERENCES

- 1 A R Hirsig and MO Schlanger, Chem Eng Prog, 80 (1984) 24
- 2 ME Dente and EM Ranzi, in LF Albright, BL Crynes and WH Corcoran (Eds), Pyrolysis Theory and Practice, Academic Press, New York, 1983, p 133
- 3 L L Ross and W R Shu, in A G Oblad, H G Davis and R T Eddinger (Eds), Thermal Hydrocarbon Chemistry, Am Chem Soc Adv Chem Ser, 183 (1979) 129
- 4 M Murata, N Takeda and S Saito, J Chem Eng Jpn, 7 (1974) 286
- 5 PD Pacey and JH Purnell, Ind Eng Chem Fundam, 11 (1972) 233

- 6 D R Powers and W H Corcoran, Ind Eng Chem Fundam, 13 (1974) 351
- 7 G H J Isbarn Ederer and K H Ebert, In K H Ebert, P Deuflhard and W Jaeger (Eds), Modeling of Chemical Reaction Systems, Springer Series in Chem Phys, Vol 18, Springer-Verlag, New York, 1981, p 235
- 8 SK Layokun and DH Slater, Ind Eng Chem Process Des Dev, 18(2) (1979) 232
- 9 K M Sundaram and G F Froment, Ind Eng Chem Fundam, 17 (1978) 174
- 10 F O Rice, J Am Chem Soc, 53 (1931) 1959
- 11 A Kossiakoff and FO Rice, J Am Chem Soc, 65 (1943) 580
- 12 DS Aribike and AA Susu, Thermochim Acta, 127 (1988) 247
- 13 A F Trotmann-Dickenson, Advanced Free-Radical Chemistry, Vol 1, Wiley, New York, 1965
- 14 J A Kerr, in C H Bamford and C F H Tipper (Eds), Comprehensive Chemical Kinetics, Vol 18, Elsevier, Amsterdam, 1976, p 39
- 15 D L Allara and R Shaw, A Compilation of Kinetic Parameters for the Thermal Degradation of n-Alkane Molecules, Personal Communication
- 16 E M Ranzi, M Dente, S Pierucci and G Biardi, Ind Eng Chem Fundam, 22 (1983) 132
- 17 M Murata, S Saito, A Amano and S Maeda, J Chem Eng Jpn, 6 (1973) 252
- 18 M Bajus, V Vesely, P A Leclercq and J A Rijks, Ind Eng Chem Prod Res Dev, 18 (1979) 30
- 19 B Blouri, J Giraud, S Nouri and D Herault, Ind Eng Chem Process Des Dev, 20 (1981) 307
- 20 D B Miller, Ind Eng Chem Prod Res Dev, 2 (1963) 221
- 21 SW Benson, in Refining Petroleum for Chemicals, ACS Adv Chem Ser No 97, Washington, DC, 1970
- 22 T Kunugi, T Sakai, K Soma and Y Sasaki, Ind Eng Chem Fundam, 8 (1969) 374
- 23 SW Benson, Thermochemical Kinetics, 2nd edn, Wiley, New York, 1976
- 24 K M Sundaram and G F Froment, Chem Eng Sci, 32 (1977) 601
- 25 D S Aribike, A A Susu and A F Ogunye, Thermochim Acta, 51 (1981) 113
- 26 C W Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey, 1971
- 27 P Deuflhard, G Bader and U Nowak, in K H Ebert, P Deuflhard and W Jaeger (Eds), Modeling of Chemical Reaction Systems, Springer Series in Chem Phys, Vol 18, Springer-Verlag, New York, 1981, p 38
- 28 R C Aiken and L Lapidus, AICHE J, 20 (1974) 368
- 29 EW Guertin, J P Sorensen and W E Stewart, Comput Chem Eng, 1 (1977) 197
- 30 R H Snow, J Phys Chem, 70 (1966) 2780
- 31 G M Come, J Phys Chem, 81 (1977) 2560
- 32 M Dente, E Ranzi and AG Goossens, Comput Chem Eng., 3 (1979) 61
- 33 D Edelson and D L Allara, AICHE J, 19(3) (1973) 638
- 34 G M Come, Comput Chem Eng, 3 (1979) 603
- 35 T Sakai, Kagaku no Ryoiki, 26 (1972) 10
- 36 A C Hindmarsh, GEAR Ordinary Differential Equation System Solver, Computer Documentation, UC ID-30001, Rev 3, Lawrence Livermore Laboratory, Dec, 1974