THERMAL STABILITY OF SOME 1,3,4-THIADIAZOLES WITH POSSIBLE ANTIMICROBIAL ACTIVITY

SALMAN R. SALMAN *

Chemistry Department, College of Science, University of Baghdad, Jadiriya, Baghdad (Iraq)

N.F. MAHMOUD

Department of Pathology, Institute of Medical Technology, Foundation of Technical Institutes, Baghdad (Iraq)

(Received 12 February 1988)

ABSTRACT

Five-substituted-aryl-2-sulphonyl-1,3,4-thiadiazoles, five-substituted-1,3,4-thiadiazoles, five-substituted-1,3,4-thiadiazol-2-yl-carbazates and dithiocarbazates and 2-(N, N'-dialkyl carboxy)hydrazino-5-phenyl-1,3,4-thiadiazoles were prepared. Thermal analyses of these compounds were performed in static air. Information was obtained on their thermal stability and decomposition.

INTRODUCTION

Several 1,3,4-thiadiazole derivatives show a pronounced antifungal activity [1,2], in addition to the well-known fungicidal and bactericidal properties of dithiocarbamates [3]. In a previous study [4,5] the preparations of compounds 1-8 (shown below) were reported.

(a) Five-substituted-aryl-2-sulphonyl-1,3,4-thiadiazole compounds (1, X = H; 2, X = p-chloro; 3, X = p-nitro).

(b) Five-substituted-1,3,4-thiadiazol-2-yl carbazates and dithiocarbazates (4, X = O, R = allyl, y = chloro; 5, X = O, R = C_4H_9 , y = H; 6, X = O, R = allyl, y = H; 7, X = S, R = C_2H_5 , y = H).

* Author to whom correspondence should be addressed.

(c) 2-(N, N'-Dialkyl carboxy)hydrazino-5-phenyl-1,3,4-thiadiazoles (8, R = allyl).

Some of these compounds show biological activity (Table 1). It has been suggested that the biological activity of many pharmaceuticals depends on the σ and π characteristics of the substituents [6,7]. Thermoanalytical methods have been applied to the study of the stability, structure and physical properties of organic compounds [8–13] and pharmaceuticals [14].

The aim of this work is to study the thermal stabilities and decomposition patterns of compounds 1-8.

EXPERIMENTAL

Compounds 1-8 were prepared as described in refs. 4 and 5. Compounds 4-8 are derivatives of compounds 1-3. Differential scanning calorimetry (DSC) measurements were carried out using a Heracus TA-500 thermal analyser. The heating rate was 10° C min⁻¹ in static air. Aluminium oxide was used as a reference.

The experimental error was $\pm 3^{\circ}$ C. Melting points were determined in an open glass capillary using electrothermal apparatus and are uncorrected.

RESULTS AND DISCUSSION

Differential scanning calorimetry of compounds 1-3 (Fig. 1) and 4-8 (Fig. 2) was performed between room temperature and 500 °C in static air.

TABLE 1

Compound	Staphylococcus	Candida	E. coli	
	aureus	albicans		
2	12	16	_	
3	-	18	-	
4	10	13	-	
5	11	12	_	
8	10	_	-	

In vitro inhibition zones (diameter in millimetres)

Fig. 1. Differential scanning calorimetry of compounds 1-3 in static air.

The values of the temperatures T_i , T_m and T_f and the decomposition temperature are shown in Table 2. The main feature of the DSC of compounds 1–8 is a sharp endothermic peak which corresponds to the fusion transition of these compounds. From Table 2 and Figs. 1 and 2 the following observations can be made.

Compound	T _i	T _m	$T_{\rm f}$	Melting point	Decomposition temperature	
					$\overline{T_1}$	<i>T</i> ₂
1	83	90	106	88	313	
2	102	128 (82.5)	168	133	317	
3	157	163	183	174	363	
4	125	127	157	130	245	288
5	93	105	120	105	245	278
6	142	132	168	145	263	308
7	111	114	130	125	275	
8	183	192	210	184	257	

The temperatures of transition and decomposition of compounds 1-8 (in °C)

TABLE 2

Fig. 2. Differential scanning calorimetry of compounds 4-8 in static air.

(1) The $T_{\rm m}$ values obtained from DSC differ slightly from the corresponding melting points.

(2) For compounds 1-3, the presence of NO₂ in the aryl group increases the thermal stability of compound 3 relative to compounds 1 and 2. Thus the thermal stability of compounds 1-3 decreases in the following order 3 > 2 > 1.

(3) Compound 3 gives a very sharp exothermic peak and decomposes at 363°C, whereas compounds 2 and 1 decompose at 317°C and 313°C respectively.

(4) The DSC curve of compound 2 shows a small endothermic maximum at 83°C. The purity of this compound was checked by thin layer chromatography and it was dried before use. This peak may be due to a phase transition. This requires further investigation.

(5) For compounds 4-6 and 8, the stability decreases in the order 6 > 4 > 5 > 8. The substitution of X = Cl in the series 4-7 decreases the thermal stability (compare compound 6 with compound 4). Replacing R = *n*-butyl with R = allyl increases the thermal stability.

(6) For compounds 4-6 two exothermic peaks are obtained. These compounds can be rearranged thermally to give (a) or (b) (Scheme 1).

Scheme 1

In contrast, compound 8 gives one exothermic peak. This result indicates that this compound will not thermally rearrange. When compound 4 is dissolved in ethanol and refluxed for a few hours, the IR spectrum of the isolated product gives no carbonyl absorption. This indicates that compound 4 rearranges to form (a) (Scheme 1).

(7) The dithiocarbazate (compound 7) is thermally less stable than the carbazates (compounds 4-6).

In conclusion, the results indicate that the relative thermal stability of compounds 1-8 decreases in the following order 3 > 2 > 1 > 6 > 4 > 5 > 7 > 8. The thermal stability increases as the π contribution of the substituents increases (X = NO₂ and R = allyl).

REFERENCES

- N.B. Singh and H.J. Singh, J. Indian Chem. Soc., 52 (1975) 1200; Chem. Abstr., 85 (1976) 21308.
- 2 M. Tomomasa, Jpn. Kokai, 7 725 028, Chem. Abstr, 87 (1977) 147054.
- 3 S. Alexander and A. Keith, Austr. patent, 498 282; Chem. Abstr., 91 (1979) 1365.
- 4 N.F. Mahmoud, M.Sc. Thesis, College of Pharmacy, University of Baghdad, 1981.
- 5 S.A. Shams El-Dine, F.H. Jawad and N.F. Mahmoud, Pharmazie, 39 (1984) 101.
- 6 E. Miller and C. Hansch, J. Pharm. Soc., 29 (1967) 56.
- 7 Y. Martin and W.J. Dunn, J. Med. Chem., 16 (1973) 578.
- 8 H.M. Frey and S.P. Lodge, J. Chem. Soc., Perkin Trans., 2 (1979) 1463.
- 9 S. Zeeman, Thermochim. Acta, 41 (1980) 199.
- 10 A. Burger and R. Ramberger, Mikrochim. Acta, 1 (1981) 217.
- 11 R.A. Bolivar, E. Cotte, C. Perez and C. Rivas, Thermochim. Acta, 57 (1982) 195.
- 12 V. Cerda, E. Casassas and F. Borrull, Thermochim. Acta, 65 (1983) 239.
- 13 C. Candolfo and D. Grasso, Thermochim. Acta, 53 (1982) 45.
- 14 R.C. Mackenzie, Differential Thermal Analysis, Vol. 2, Academic Press, London, 1970.