STUDY OF THE Ph₄SbBPh₄ ASSUMPTION FOR SINGLE ION FREE ENERGIES IN SOME ORGANIC SOLVENTS

ESAM A. GOMAA *

Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt) (Received 24 February 1988)

ABSTRACT

A critical study has been carried out to verify the Ph_4SbBPh_4 electrolyte assumption, in which the standard free energies of transfer of the electrolyte ΔG^{\oplus} from one solvent to another are divided equally between the cation and the anion. A discussion is presented on the basis of a model which treats the total solvation energy of an ion as a composite of electrostatic and non-electrostatic contributions. The neutral molecules Ph_4Sn and Ph_4C , are proved to be (from their sizes and structures) neutral analogues of the reference ions Ph_4Sb^+ and Ph_4B^- , respectively. The single free energies of the reference ions Ph_4Sb^+ and $Ph_4B^$ were also estimated.

On plotting the relationship between the free energies of transfer of Ph_4SbBPh_4 against Gutmann's acceptor and donor numbers, good agreement was obtained, indicating the similarity of the electrostatic charges on the two reference ions.

INTRODUCTION

The estimation of single ion free energies requires extra thermodynamic assumptions, for which a wide variety of methods have been introduced. The existing methods have been continuously discussed by a number of workers [1-6] and most extensively by Parker [2] and Popovych [3]. The methods [7-10] that have been used most extensively for single ion thermodynamic determination are based on the assumption that the thermodynamic values for a large reference cation can be equal to those of a reference anion of molecular similarity. Different pairs of large reference ions have been suggested, i.e. TABPh₄B (TAB, triisoamyl-*n*-butylammonium) [11] and Ph₄AsBPh₄ [12]. It has been proved by Kim [13, 14] that Ph₄AsBPh₄ is an asymmetric model. The aim of this work is to study the plausibility of Ph₄SbBPh₄ electrolyte for single ion thermodynamic determination.

^{*} Present address: Teachers Training College, Salalah-P.O.19905, Sultanate of Oman.

EXPERIMENTAL

Tetraphenylantimony tetraphenylborate (Ph_4SbBPh_4) was prepared by adding tetraphenylantimony bromide (Ph₄SbBr; Alfa Inorganic Chemicals) to sodium tetraphenylborate (NaBPh₄; Merck) solutions in water, followed by filtration and recrystallization (several times) from acetonitrile. The Ph₄Sn used (Alfa Inorganic Chemicals) was purified by repeated crystallization from chloroform. The solvents acetonitrile (MeCN) and dimethylacetamide (DMA) were obtained from Merck, whereas N, N-dimethylformamide (DMF), dimethylsulphoxide (DMSO), dioxane and ethanol (EtOH) were obtained from BDH. The solvents were used without further purification (a dehydrating agent was added for storage). Saturated solutions of Ph_4Sn and Ph_4SbBPh_4 in the organic solvents were prepared by shaking solutions (10 ml) in test tubes in a water thermostat (Assistent) for 1 week, followed by 2 days without shaking [15]. The saturated solutions (3-5 ml) were then evaporated to dryness in a small beaker under an IR lamp. These were dissolved in ethanol and their solubilities were determined spectroscopically (UV) using a Jobin Yvon JY 101 spectrophotometer and a calibration curve. In the case of water, saturated solutions of Ph₄Sn and Ph₄SbBPh₄ were prepared in 1 l of water. Samples (250 ml) were shaken with 10 ml of chloroform in a separating funnel. The choroform layer was extracted, evaporated to dryness, dissolved in ethanol and the solubility of the tetraphenyl derivatives was determined spectrophotometrically.

RESULTS AND DISCUSSION

To determine the partial molar volume of Ph_4SbBPh_4 , the density was measured with a digital oscillator densimeter (Heraeous-Paar DMA-50) in dimethylformamide (DMF). The molar volume of a solute in solution is evaluated by the relation [16]

$$\phi_{\rm v} = \frac{M}{d} + \frac{(d_0 - d) \times 10^3}{m d d_0} \tag{1}$$

where M is the molecular weight of the solute, m is its concentration and dand d_0 are the densities of water and the solution, respectively. The volume of Ph₄Sb⁺ was estimated by subtraction of the volume of Ph₄B⁻ [17] from the volume of the salt electrolyte. The van der Waals' volume of the cation (V_w, Ph_4Sb^+) was estimated by subtracting the Ph₄B⁻ value given in ref. 17 from the van der Waals' volume of Ph₄SbBPh₄ calculated using the Bondi model [18]. From the experimental data and the calculated van der Waals' volumes, the packing density P_d of each molecule is calculated by

$$P_{\rm d} = \frac{V_{\rm w}}{\phi_{\rm v}} \tag{2}$$

TABLE 1

Van der Waals' volume V_w , molar volume ϕ_v , packing density P_d and volume quotient f for tetraphenyl molecules

	Ph ₄ C ^a	Ph ₄ B ^{- a}	Ph ₄ Sn	Ph ₄ Sb ⁺
$\overline{V_{\rm w}({\rm cm}^3 {\rm mol}^{-1})}$	186.7	188.2	204.32	205.84
$r_{\rm w}(\rm cm)$	4.2×10^{-8}	4.21×10^{-8}	4.59×10^{-8}	4.61×10^{-8}
$\phi_v(cm^3 mol^{-1})$	278.1	280.6	304.36	307.38
Pa	0.671	0.671	0.671	0.669
$f_1^{0} = V_{\mathbf{w}} \operatorname{Ph}_4 \operatorname{Sn}/V$	$_{w}Ph_{4}C = 1.0943$			
$f_2^0 = V_w Ph_4 Sb^+/$	$V_{w} Ph_{4}B^{-} = 1.093$	7		
$f_1 = \phi_v Ph_4 Sn/\phi_v$	$Ph_4C = 1.0944$			
$f_2 = \phi_v Ph_4 Sb^+/\phi$	$P_{v}Ph_{4}B^{-} = 1.0954$			
^a Ref. 17.	<u> </u>			

The calculated P_d values are given in Table 1; the average value is found to be 0.671 \pm 0.02, which agrees well with the data of King [19] for large molecules. The van der Waals' volumes and the partial molar volumes provide evidence for the similarity in molecular size of Ph₄Sn and Ph₄Sb⁺ and Ph₄C and Ph₄B⁻. The data given in Table 1 indicate that the reference cation (Ph₄Sb⁺) and the reference anion (Ph₄B⁻) do not have equal molecular volumes, although the difference is small. From the molal solubility values of Ph₄SbBPh₄ in the solvents under consideration, the pK_{sp} values and the free energies of transfer $\Delta^s_w G^{\oplus}$ from water to the organic solvents were calculated following eqns. (3) and (4) [15] and their values are listed in Table 2.

$$pK_{sp} = -2 \log C + 2 \log \gamma_{\pm}$$
(3)

$$\Delta_{\mathbf{w}}^{s} G^{\Phi} = 2.303 RT \left[pK_{\mathrm{sp(s)}} - pK_{\mathrm{sp(w)}} \right]$$
(4)

C is the molal solubility, γ_{\pm} is the activity coefficient [15], s denotes organic solvent and w denotes water molecules. By subtracting $\Delta_{w}^{s}G^{\Phi}$ values for

TABLE 2

Free energies of transfer of Ph_4SbBPh_4 from water to organic solvent (kcal mol⁻¹) (molal scale at 25°C)

Solvents	Molar	Molal	$\log \gamma_{\pm}$	Ph ₄ SbBF	°h₄	Ph ₄ AsBPh ₄
	solubility	solubility		$\overline{\Delta G^{\Phi}}$	$\Delta^{s}_{w}G^{\Phi}$	$\Delta^{s}_{w}G^{\Phi}$ a
MeCN	3.5761×10^{-3}	4.6031×10^{-3}	-0.0966	6.6387	- 16.655	- 16.09
DMF	0.08146	0.0863	-0.2840	3.6772	- 19.615	-18.52
DMSO	0.03705	0.03381	-0.1497	4.4211	-18.871	-17.86
DMA	0.04756	0.05077	-0.2300	4.1585	-19.134	-18.53
Dioxane	1.6012×10^{-3}	1.5593×10^{-3}	-0.0314	7.7434	- 15.549	-
EtOH	4.877×10^{-5}	6.2116×10^{-5}	-0.1307	11.460	-11.830	-10.59
H ₂ O	2.9446×10 ⁻⁹	2.9530×10^{-9}	-0.0103	23.297	Ö	0

^a Mean values in ref. 17.

Free energies of transfer from water to the organic solvents of the reference cations (Ph_4Sb^+ , Ph_4As^+) and reference anion Ph_4B^- at 25°C (kcal mol⁻¹ in molal scale)

Solvents	$\Delta^{\rm s}_{\rm w}G^{\oplus}({\rm Ph}_4{\rm B}^-)$	$\Delta^{s}_{w}G^{\oplus}(\mathrm{Ph}_{4}\mathrm{Sb}^{+})$	$\Delta^{s}_{w}G^{\oplus}(\mathrm{Ph}_{4}\mathrm{As}^{+})$
MeCN	- 7.96	-8.13	-8.33
DMF	- 8.98	- 9.54	- 9.48
DMSO	- 8.44	-9.42	- 9.09
DMA	- 9.14	- 9.39	-9.65
EtOH	- 5.02	- 5.57	- 5.36
H ₂ O	0	0	0

tetraphenylantimony tetraphenylborate from those of tetraphenylborate given in ref. 13, the corresponding values for Ph₄Sb⁺ were evaluated. $\Delta^{s}_{w}G^{\Rightarrow}$ values for the ions Ph₄B⁻, Ph₄Sb⁺ and Ph₄As⁺ are shown in Table 3. The coefficient of $\Delta^{s}_{w}G^{\Rightarrow}$ (Ph₄Sb⁺)/ $\Delta^{s}_{w}G^{\Rightarrow}$ (Ph₄As⁺) has a mean value of 1.006 and $\Delta^{s}_{w}G^{\Rightarrow}$ (Ph₄Sb⁺)/ $\Delta^{s}_{w}G^{\Rightarrow}$ (Ph₄B⁻) has a mean value of 1.0671, indicating the plausibility of the Ph₄SbBPh₄ assumption for the determination of single ion thermodynamics.

Fig. 1. Plots of free energies of transfer of Ph_4SbBPh_4 from water to organic solvents against the donor (a) and acceptor (b) numbers of solvents.

On plotting the relationship between the free energies of transfer of Ph_4SbBPh_4 against Gutmann's acceptor (AN) and donor numbers (DN) [20,21] volcanic (\land) and antivolcanic (\lor) relations were obtained (see Fig. 1). The lines (a) and (b) in Fig. 1 are symmetric, indicating that opposite relations proceed on the reference electrolyte, i.e. oxidation and reduction for DN and reduction and oxidation for AN at the sites of reference cation (Ph_4Sb^+) and reference anion (Ph_4B^-). That is to say there is a symmetry between the electrostatic free energies of the reference cation and anion.

REFERENCES

- 1 H.-M. Koepp, H. Wendt and H. Strehlow, Z. Elektrochem., 64 (1960) 483.
- 2 A.J. Parker, Chem. Rev., 69 (1969) 1.
- 3 O. Popovych, Crit. Rev. Anal. Chem., 1 (1970) 73.
- 4 R.G. Bates, Determination of pH, Theory and Practice, Wiley, New York, 1973.
- 5 I.M. Kolthoff, Pure Appl. Chem., 25 (1971) 305.
- 6 K. Schawbe and Chr. Qeck, Bull. Soc. Chem. Belg., 433 (1974) 39.
- 7 B.G. Cox, G.R. Hedwig, A.J. Parker and W.E. Wattes, Aust. J. Chem., 27 (1974) 477.
- 8 I.M. Kolthoff and M.K. Chantooni, Jr., J. Phys. Chem., 76 (1972) 2024.
- 9 O. Popovych, A. Gibofsky and D.H. Berne, Anal. Chem., 44 (1972) 811.
- 10 J.C. Rat, S. Villermaux and J.J. Delpuech, Bull. Soc. Chim. Fr., (1974) 815.
- 11 R. Alexander and A.J. Parker, J. Am. Chem. Soc., 89 (1967) 5549.
- 12 O. Popovych, Anal. Chem., 38 (1966) 558.
- 13 J.I. Kim, Z. Phys. Chem., N.F., 113 (1978) 129.
- 14 J.I. Kim and E.A. Gomaa, Bull. Soc. Chim. Belg., 90 (1981) 391.
- 15 E.A. Gomaa, Thermochim. Acta, 80 (1984) 355.
- 16 D.V. Jahagirdar and S.U. Pankanti, Indian J. Chem., 22A (1983) 195.
- 17 J.I. Kim, J. Phys. Chem., 82 (1978) 191.
- 18 A. Bondi, J. Phys. Chem., 68 (1964) 441.
- 19 E.J. King, J. Phys. Chem., 73 (1969) 1220.
- 20 V. Gutmann, A. Steinger and E. Wychera, Monatsh. Chem., 97 (1968) 460.
- 21 V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York, 1978.