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ABSTRACT 

The accuracy of a simple, well-known approximation to the solution of the 
adiabatic explosion problem is examined, and it is shown that, with a minor modi- 

fication, the approximation can be converted to a form accurate to 1% or better for 

a wide range of the input parameters_ The final result lies well within the capabilities 

of even the simpIer scientific caIcuIators_ The effects of depletion of the reactant and 

a temperature-dependent heat capacity, not included in the development, are briefly 
evaluated. 

The differential equation describing the time-temperature history of an isolated 

system in which a substance is undergoing an mth-order exothermal decomposition 

with an Arrhenius temperature dependence is 

Cg = Q(1 -j_)mZe-EzR8 (1) 

where c, Q, 2, and E are the heat capacity, heat of reaction, pre-exponential factor, 

and activation energy, respectively, R is the gas constant, 6 is the absoIute temper- 

ature, 7 is the time, and 1 is the fraction of the substznce decomposed (constant 

factors involving concentration unit, have been absorbed into Z). In the most genera1 
case, c, and possibly Q, wiII depend on temperature, whiie i. can be expressed as a 

function of temperature through the equation 

1. = 
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=C 
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To Q 
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On rearrang& and integrating (1) we obtain 

t= 

J‘ 

T 
ce 

E!R8 

d0 
‘io QZ(1 -I-)” 

as the equation defining T(i) given the initial condition 0 = T,, at t = 0. 

(3) 
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An exact, expiicit form for the right-hand side of eqn (3) has not been obtained, 
but a number of al;proximate solutions, of varyirq degrees of accuracy and com- 

pIexity, have been proposed I_ For the special case c and Q constant and m = 0, a 

convenient and -useful appro_ximation is 

cR t!Z--- 

ZQE 
(~,t eE:‘RT~ _ ~2 eEiRTj 

(4) 

If oniy the explosion time (not the time-temperature history) is desired, then 5% T,-, 

and eqn (4) reduces further to the familiar result 

t 
CRT, eEfRTo 

= 
ZQE 

Q 

In this paper we examine the accuraLy of eqns (4) and (5) and show how, with 

a minor modification, they can be converted to forms of more than adequate accuracy 

for a wide range of the parameters E, T,, , and T. 

THEORY 

For c and Q constant and m = 0 eqn (3) becomes 

where Q E E/R. A common way of obtaining 
substitution x = .z/& We then have 

f 

T 
e*!*dO = .z 

‘x0-0) e-T 

J 
-dx 

c To r(r) x2 

eqn (4) from cqn (6) is to make the 

Q 

In the inte_grand, the exponential is the dominant term, and hence we can write 

a 

3 F,(q To_- T) (8) 
‘fhe result given in eqn (8) cau be derived in a more illuminating way by 

inte_mting the series expansion of the exponentia1. Since the series converges uni- 

formly on any closed interval not containin g 0, it can be integrated term by term to 

obtain the resuIt 

f 

T fl -i-l 
@*dQ = 

. ro n(n+l)! G- 

(9) 
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The individual terms in the infinite series can be written 

d i-1 x x x CL 
=-- - 

n(n+I)! c To 2 To --- nT, n(nt1) 
(10) 

For vralues of 31 and T,-, of practical interest, z[T,-,> 1. Thus the terms of the series 
increase with n untiI z[rzTc N 1, after which they decrease monotonically. More 
precisely, if a,. is the Iargest term in the sum, then a,,.+ Ja,. c 1 and a,,._ I/a,,Oc I 
jointIy imply 

Is/T,-(A- 2.5 +2/?2’)1 to.5 (11) 

Setting n’ = rTe-2-7 will suffice for our purposes. For example, for CL = 23000 and 
T, = 500 K, n’ zz 43_ This suggests that, with little error, we can write 

Tot a2 =/To-f _2__- =- e 

Y 1 T, 1 2T, 
(12) 

Introducing this result, and the corresponding resuh for the series in T, in eqn (9) we 
obtain 

F 
T 

e”edU~~(T-T,)t~(T2-TgZ)+a~n T,'&To T2edT (13) 
. ro CL z I 

It is now in order to insert some typical values for Q, To, and Tin eqn (13) and 
examine the magnitudes of the various terms on the right-hand side of this equation- 
Thus, for Y =23000, To =XlOK, and T= 510 K, we have 2(T-To) =20, 
(T’ - T,)/r = 0.4, z In T/T, = 455, (T$cz)eaiTo = 1.032x IO”, and (T2/z)ezfT = 
4.36x 102’. It is thus clear that all but the last two terms can be discarded with 
negligible error, and we again have the result given in eqn (8). However, we are now 
in a position to estimate the error invoked in using this approximation, for by far its 
largest contribution came from replacin, Q n(n+l)! by @f-2)! to obtain the result 
given in eqn (12). Since the principal contributions to the sum come from terms near 
the maximum, it can be seen from the discussion in the preceding paragraph that the 
error is given approximately by n’/(n’ t 2) where n’ = r/‘T, - 2.7; or, altemativeiy, the 
error from this source can Iargely be eliminated by using the more accurate equation* 

ezf8d9 G ‘rz,2 (T, e”ro _ T2 eziT) 3 F,(z, To, r) (14) 

me correction obviously undercorrects terms for which ntn’ and overcorrects terms for which 
n>n’, being most accurate for the Iargcst terms in the sum. Littie is gained by using a different value 

of n’ for the term in T_ 
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When T is sufikientIy Iarge in comparison with T,, the fast term in eqn (13) can also 
be omitted, and eqn (14) then becomes 

In TabIe I the resuk given by eqns (8) and (14) are compared, in terms of 
percentage errors, with the results obtained by a numerica! evaluation of the right- 
hand side of eqn (9) for sekted vahxes of a, T, , and T covering the range of practical 

interest. The T= 3GOO values also represent the percentage errors in expIosion times 
as caIcuIated from F, and the equivaient part of Fl _ The errors in F3 are negligible, 

while those in Fl range as high as IS%. 

TABLE I 
PERCEhTAGE ERRORS OF Fl AKD Fs FOR VARIOUS VALUES OF 
a. To. AXD 7-= 7,,tAT 
(I)= 100 (Fl-FF2)!Fz;[2)= IOO(Fs-FF,)fF~. 

a AT coo 600 800 

(I) (2) (1) f-9 (1) 0 

30000 1 
10 

100 
T=3ooo 

20000 1 
10 

IO0 
T=3000 

30000 I 
IO 

100 
T=3000 

- 8.0 O-2 
-8.1 0.2 
- 8.4 -0.1 
- 8.4 -0.2 

-4.0 0.1 
-4-o 0.0 
-4-I 0.0 
-4.1 0.0 

- 2.7 0.0 
-2-7 0.0 
-2-7 0.0 
-27 o-0 

-120 0.6 
- 12.1 OS 
-126 -0.1 
- 13.0 -0.5 

- 6.0 
-6.0 
- 6.2 
-6.2 

-4.0 
-4.0 
-4.1 
-4-l 

0.1 

-::: 
-0.1 

0.1 
0.0 
0.0 
o-0 

-16-O 1-I 
- 16.1 1.0 
-16.8 0.7 
- 18.1 -1.4 

-88.0 
-88.0 
-88.3 
-8.4 

-5.3 
-5_4 
-5_5 
-5-S 

0.2 

-8:; 

-0.2 

0.1 
0.1 
0.0 

-0-l 

The question naturally arises as to whether some of the other approximations 
we have made introduce Iarger errors than those we have corrected. We have, for 
*example, i&aored depletion of the reactant, taking m = 0. If m = I, with c and Q 
constant, eqn (3) becomes 

(16) 



5 

Letting t, = -& 
I 

T -r 
eziff d0 and r, = &_ c ie’:‘dff we obtain. after some manipula- To 

tion, with J_ = 6 (0 - T,), 

(17) 

from which the effect of depletion of reactant can be evaluated. For smaI1 r and Iarge 

To the effect can be large, with 1; 2: 0_2t,. For the more usual values of z, however, 

the etror caused by ignoring depletion is much smaller, typicaliy a percent or so in t. 

Unfortunately, the depletion error and the error associated with the use of F1 are in 

the same direction, so there is still merit in the use of Fa rather than F’ _ 

For a temperature-dependent heat capacity, w-ith m =0 and c=a-i-bT, 

eqn (3) becomes 

As an example WC have evaluated, for RDX, eqns (6), 

5 e”“dfl= F. and with I e z’edO = I;; _ The parameters used are’: 

Z-,=46OK 

a = 2.3716x lo4 K 

2 = 2-02x lo’* set- f 

Q = 5OOc4g-’ 

C = 0_035+7_2x !O-v-(K) ca1 g-l --K-r 

TABLE 2 

CALCULATED VALUES OF I (set) 

T F2x IO-” cFz:QZ cF,!QZ (17)’ (Ia= 

461 23261 8.43 8.44 844 8-44 
462 4.4067 15.98 15.99 15-99 16.01 
464 7.9351 28.77 28.79 28.8 i 28.88 
466 10.766 39.04 39.06 39.12 39.26 
470 14.873 53.93 53-95 54.09 54.36 
475 18.055 65.46 65.49 65.74 66.22 
480 19.935 72.28 72.30 72.64 73.26 
500 22.404 81.23 81.24 81-75 82-63 
550 22.835 82.79 82.80 83.38 84.36 
700 22.842 9282 S2_82 83.40 84.38 

loo0 22842 82-82 82.82 83-40 84.38 

(17), and (18) with 
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The value of c at 460 K (0.3662) was used in eqns (6), (17), and cF,/QZ. The resuhs 
for various values of Tare given in Table 2_ The explosion time obtained from Fz or 

F’ is 82.8 set_ Wi’& depIetion this increases to 83.4 sec. With a temperature-dependent 

heat capacity (no depletion) the explosion time becomes 84.4 sec. Note that, because 

of the excellent agreement between columns 3 and 4 in Table 2, we can use Fs in place 

of Ft in either eqn (17) or (IS)_ The error resulting from the use of a constant heat 

capacity could, of course, be reduced by using a value corresponding to a temperature 

somewhat higher than T’, _ Further refinements are hardly justified, however, because 

of the uncertainities in the various thermochemical and kinetics constants_ 

CONCLUSION 

We have derived a relatively simpIe and accurate approximation to the solution 

of the adiabatic explosion problem. If desired, a temperature-dependent heat capacity 

or depletion of the reactant by a first-order reaction can be included without unduly 

complicating the calculation. 
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