Thermochimica Acta, 12 (1975) 1–10 © Elsevier Scientific Publishing Company, Amsterdam – Printed in Belgium

RELATIONS BETWEEN TORSIONAL FREQUENCY AND IONIZATION POTENTIAL IN HALOPROPANES AND ALLYL HALIDES

J. LIELMEZS

Chemical Engineering Department, The University of British Columbia, Vancouver, B.C. (Canada) (Received 2 December 1974)

ABSTRACT

It is shown that linear relation $\tau = k + m\Lambda$ exists between the fractional torsional torsional frequency $\tau[\tau = (v_P - v_X)/v_P$; where P represents n-propane or propene, respectively, and X = P, F, Cl, Br and I] and the fractional ionization potential $\Lambda[\Lambda = (\Lambda_P^* - \Lambda_X^*)/\Lambda_P^*]$ for the same structural groups of normal and iso-halogenated propanes and allyl halides.

INTRODUCTION

Earlier Lielmezs and Morgan¹ and Lielmezs and Hagan² have shown that a relation may be found by plotting the potential barrier to internal rotation in the case of ethyl halides, and the torsional frequency for 1-fluoro-2-haloethanes and allyl halides against the first ionization potential of the substituent halogen atoms. Noting the strong change of the ionic character of the C-X (X = F, Cl, Br, I) bond when the halogen atoms are substituted in the given structural series; these observations^{1,2} led to the support of Pauling's³ assertion that the potential barriers are not inherently the property of the axial bond itself (compare with Wilson⁴) but result rather from the exchange interactions of electrons involved in the other bonds of the attached atoms as determined by the overlap between the parts of the adjacent bond orbitals that extend from each of these atoms towards the other. This, then seemed to indicate that the change in the nature of the hybrid character of the bond orbitals introduced by the first ionization potential shift of the substituent X-atoms (X = F, Cl, Br, I); if considered to reflect the change of the interaction energy of the adjacent hybrid bonds (Pauling's approach³), becomes the primary cause while the nature of the axial bond (Wilson's statement⁴) appears to become a secondary effect in the overall assessment of the origin of potential barrier to the internal rotation.

EXPERIMENTAL

The presented findings of this work while reaffirming this observation additionally yield useful empirical correlation between the torsional frequency and the

Compound	Ionizatio	n potential		Torsional	frequency		Ve V _K	$A_{\rm F}^{*} - A_{\rm K}^{*}$	
	eV	cal niol ⁻¹ × 10 ⁵	Ref.	cm - 1	cal mol ⁻¹	Ref.	4 VP	Å	
n-Propane	11.07	2.55296	ŝ	215°	614.71	Q	0	0	
skew-1-Fluoropropane				139°	397.41	7	0.35349		
skew-1-Chloropropane	10.87	2.49531	Ś	132°	377.40	7	0.38605	0.2258	
skew-1-Bromopropane	10.18	2.34772	ŝ	127°	363.11	7	0.40930	0.08039	
skew-1-lodopropane	9.26	2.13554	Ś	12000	343.10		0.44186	0.16350	
i-Butane	10.57	2.43765	Ś	256°	731.93	8	ð	0	
2-Fluoropropane									
2-Chloropropane	10.78	2.48608	ŝ	259 ^r	740.51	6	- 0.20465	0.026197	
1							(−0.01172) ^a	s(78910.0-)	
2-Bromopropane	10.075	2.32350	ŝ	256 [°]	731.93	6	- 0.19069	0.08980	
							(0.0000) [≖]	(0.4683)*	
2-lodopropane	9.17	2.11479	Ś	251 ^c	717.63	<i>с</i> л	-0.167439	0.171638	
•							(0.01954)	(0.13245)	
Propene	9.73	2.24393	10	188	537.51	11	0	0	
cis-3-Fluoropropene	17.15 ^b	3.95513	12	163	466.03	3	0.13298	-0.76259	
cis-3-Chloropropene	11.21 ^b	2.58525	12	124	354.53	13	0.34042	-0.15211	
cis-3-Bromopropene	10.43 ^b	2.40537	12	119	340.23	13	0.36703	-0.07195	
cis-3-Iodopropene	9.30 ^b	2.14477	12	107	305.92	13	0.43086	0.04419	
6 All tracional fractional	uar are riten	fire the ancentic state	nulase etatad	l atherwise b	This torsiona	fremency is	taken as an avera	ae freamency hetweet	
WILL LUISINGIAN ALL AND ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	חרט מזר פוירח	אומוני בההאמוק אווו וחו ו							

⁴ This frequency value represents an average between in and out of phase values⁹.⁸ These listed τ and Λ values for 2-halopropanes refer to isobutane (CH₃ as the reference state instead of n-propane). In this case one hydrogen atom is exchanged for one CH₃-group.^b These are lone pair orbital (substituent is halogen atom) ionization potential values¹². 15 the in and out of phase torsion of the methyl group in liquid state. This is comparable with the torsional frequency treatment of 2-halopropanes (see footnote ', this Table; also ref. 9). ^c This is skeletal torsion. ^d To retain the selfconsistency among the torsional frequency assignment for skew-1-halopropanes, value of 120 cm⁻¹ is used. The value of 127 cm⁻¹ as suggested by Radcliffe and Wood⁷ is thought to be too high. ^e This is E-torsional mode.

TABLE 1

SUMMARY OF DATA USED

2

Fig. 1. $\tau - \Lambda$ relation (eqn (3)). Dashed line (--) indicates the predicted $\tau - \Lambda$ coordinates for skew-1-fluoropropane.

Fig. 2. Direct relation between the torsional frequency, v in cal mol⁻¹ and the molecular ionization potential, I.P. in calmol⁻¹ × 10⁵. Dashed line (--) yield the predicted v and I.P. values for skew-1-fluoropropane.

molecular ionization potential for the same structural groups of normal and isohalogenated propanes and allyl halides (Table 1, Figs. 1 and 2 and eqn (3)).

If we introduce the following set of dimensionless coordinates:

$$\tau = \frac{v_{\rm P} - v_{\rm X}}{v_{\rm P}} \tag{1}$$

and

$$\Lambda = \frac{\Lambda_{\rm P}^* - \Lambda_{\rm X}^*}{\Lambda_{\rm P}^*} \tag{2}$$

where: v is the torsional frequency, cal mol⁻¹;

 Λ is the molecular ionization potential cal mol⁻¹ × 10⁵;

- P refers to n-propane or propene, depending on the used reference state;
- X = F, Cl, Br, I; the substituent halogen atoms in the given hydrocarbon series;

then it is possible to write a linear relation between τ and Λ ; i.e.

$$\tau = k + m\Lambda \tag{3}$$

such that k and m are characteristic constants (intercept and slope) for each of the given halogenated hydrocarbon series.

Using the data as found in Tables 1 and 2* and Figs. 1 and 2**; the constant k and m values were determined as follows***—for skew-1-halopropanes: k = 0.3770; m = 0.4020; for 2-halopropanes: k = 0.2104; m = 0.2195; and for cis-3-halopropenes: k = 0.4018; m = 0.3566. Although only up to 4 data point pairs (Table 1) were used; and the so presented relations (eqn (3)) would appear to be weak correlations; nevertheless for each of the obtained lines the correlation coefficient[§] was r = 1.0000.

Figures 1 and 2 were obtained using the data listed in Table 1. Figure 1 shows that the already introduced dimensionless coordinates (eqns (1) and (2)); the fractional frequency τ and the fractional molecular ionization potential Λ , when referred to n-propane (for *skew*-1-halopropane and 2-halopropane series) and propene (for allyl halides) as the reference states, correlate into a linear relation (eqn (3)).

$$r = \frac{\sum_{i=1}^{n} (X_i - \hat{X}) (Y_i - \hat{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \hat{X})^2 \sum (Y_i - \hat{Y})^2}}; \text{ where } \hat{X} = \frac{\sum_{i=1}^{n} X_i}{n} \text{ and } \hat{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

4

^{*}See also refs. 5-16.

^{**}As Fig. 2 indicates similar relations (eqn (3)) could be established directly between the torsional frequency and the ionization potential. However, we preferred to use the dimensionless form (eqns (1) and (2)) of the involved parameters referring to "parent" compounds.

^{***}If we choose for 2-halopropanes iso-butane (instead of n-propane) as the "parent" compound, then the used experimental data (Table 1, Fig. 3) yield: k = -0.0082; m = 0.1757; r = 1.0000. The correlation coefficient r is defined as:

In terms of the fractional coordinates chosen with respect to "parent" molecule (n-propane and propene) with known configurational and spectral properties; this change of torsional frequency value versus the corresponding change of the molecular ionization potential may be either positive or negative (Table 1, Fig. 1) depending on the initial molecular structure and the nature of the compound bonding of the chosen "parent" molecule. This is brought out for the case of 2-halopropanes when n-propane and iso-butane have been chosen as two possible "parent" molecules* (Table 1, Fig. 3). Within each of the given structural series (*skew*-1-halopropanes, 2-halopropanes, allyl halides) as expected^{5,10,12} the ionization potential decreases with the increasing size of substituent halogen atom (X = F, CI, Br, I). This lowering of the ionization potential of the molecule as the halogen atom substituents pass from fluoride to iodide (Tables 1 and 2) is associated with a simultaneous decrease of the respective torsional frequency values**.

This correlating aspect of the substituent halogen atoms additional to Fig. 1 is found in Fig. 2 where torsional frequency is plotted against the corresponding ionization potential. Considering that the molecular ionization potential describes the energy relations characteristic of the configurational and spectral property changes of the molecule, the above observation endorses the previously made statement that the primary cause of the internal rotation is found in the interaction energy of the adjacent hybrid bonds³. Then the nature of the axial bond⁴ becomes a secondary effect alone not sufficient to explain the origin of the barrier to the internal rotation. Therefore a systematic classification of molecular ionization potential sets is needed to assess the particular behavior of torsional frequencies within any compound series.

DISCUSSION

As seen from the photoelectron spectroscopy^{5,10,12,17-20} the theoretical analysis of the photoelectron spectra yields very accurate information regarding the energy relations of the specific molecular orbitals and the vibrational structure found in the energy bands. Indeed the variations of ionization potential for any distinct energy level can be correlated along the structurally related compound series^{5,10,12,18,19}. Analyzing the data displayed in Table 2, we already noted that the adiabatic ionization potential did decrease slowly with the increased chain-length. The same trend is also observed in mono-olefins. In this case the ionization potential of the olefinic π -electron

^{*}Comparing the structures of these "parent" molecules (Fig. 3) we see that either the H-atom (in case of n-propane) or CH₃-group (for iso-butane) can be substituted to form the issuing 2-halopropane series. Of course, this changes the initial reference torsional frequency and ionization potential values (Tables 1 and 2) which in turn yield alternate relations on the τ - Λ diagram (Table 1, Fig. 1).

^{**}Careful scrutiny of data found in Table 2 reveal that for instance, for n-paraffins the adiabatic ionization potential values decrease with increasing chain-length (increased molecular size). On the other hand, these data also reveal that as the ionization potential values decrease; the available torsional frequency values as shown separately for solid and gas states (torsional frequency valuesoverlap for n-butane) decrease.

IONIZATION POTI	ULINES /	AND TOR	SIONAL FRE	QUENCIES" OF	SOME MOLECULES	5			
Compound	Ionization potental (eV)	Ref.	Torsional frequency (cm ⁻¹)	Ref.	Compound	Ionization potential (cV)	Ref.	Torsional frequency (cm ^{- 1})	Ref.
Methano	12.98	Ś			Methyliodide	9.54	ŝ		
Ethane	11.65	Ś	289	14	Ethyliodide	9.33	Ś		
Propane	11.07	ŝ	215"	6	i-lodopropuno	9.26	ŝ	1204	5
n-Butane	10.63	ŝ	197(254)*	15(16)	2-lodopropane	9.17	Ś	251	
i-Butano	10.57	Ś	256	x	i-Iodobutane	9.21	÷		
n-Pentane	10.32	Ś	(240)	(16)	i-lodopentane	9.19	•~;		
n-Hexane	10.18	ŝ	(240)	(16)	F ₁	15.7	Ś		
n-Heptane	R0.01	ŝ	(240)**	(16)	Ethene	10.52	9		
C,	11.48	Ś	•		Propene	9.73	0	188	=
Methylchloride	11.28	ŝ			1-Butene	9.58	01		
Dichloromethane	11.35	ŝ			1-Pentene	9.50	10		
Trichloromethane	11.42	Ś			2-Methylpropene	9.23	01		
Tetrachloromethane	11.47	Ś			2-Butene (cis)	9.13	10		
Ethylchloride	10.98	Ś	251.5	14	2-Butene (trans)	9.13	10		
1.2.Dichlorocthane	11.12	ŝ	288	14	Vinylchloride	9.995	ŝ		
1-Chloropropane	10.82	ŝ	132	۲	Vinylbromide	9.80	ŝ		
2-Chloropropane	10.78	ŝ	259	6	1-Bromopropene	9.30	s		

TABLE 2

Compound .	Ionization potential (eV)	Ref.	Torsional frequency (cm ⁻¹)	Ref.	Compound	lorization potential (eV)	Ref.	Torsional frequency (cm ⁻¹)	Ref.
1-Chlorobutane	10.65	ŝ			CH, CF=CH,			191	11
l-Chiorobulane Bri	10.65 10.55	с v			CH,CCI, CH,CH,F			305	11
Methylbromide	10.53	ŝ			CH,CHF,			222	14
Dibromomethane	10.49	ŝ			CHJCFJ			234	4
Tribromomethane	10.51	Ś			CFCI,	11.77	Ś		•
Ethylbromide	10.29	s			CF,CI,	12.31	Ś		
1-Bromopropane	10.18	ŝ	127	7	CF,CI	12.91	ŝ		
1-Bromopropane	10.075	S	256	Q					
1-Bromobutane	10.13	Ś							
1-Bromopentans	10.10	٩Ŋ							
l _a	9.28	ŝ							
 The listed ionizati the passous state. 	on potentials i Compare with	if not othei Table 1, f	rwise stated, un	e adiabatic io	nization potentials. ^b Tor. ork : compare also with T	sional frequencie	s, if not a	therwise stated,	are given for
	the states				A INTER AND			מכי מום מכוות מומו	ם וווכווואי מזות.

TABLE 2 (continued)

group torsional frequencies obtained by means of neutron inelastic scattering¹⁶. Although the last 3 values are given as constant (240 cm⁻¹), it is feit that they should slowly decrease as the chain-length increases, and that therefore this constancy should be subject to further experimental scrutiny. ^t Since we did not have available ionization potential value for n-octane, we did not list this compound in the Table. However, the solid state methyl and group torsional frequency assignment has been made¹⁶ as 237 cm⁻¹. This once more asserts (footnote •) that torsional frequencies should decrease with increased parallin chain-length the same way as the value of the corresponding ionization potential decreases. decreases as the size of the molecule increases. In the case of alkyl halides the behavioral pattern of data series seems to be consistent with the suggestions made by Mulliken²¹ that the most loosely bound electron for this type of compound series is one of the non-bonding np-orbitals localized in the halogen atom. As shown by Watanabe et al.⁵ the variations of ionization potential follow this reasoning (see Table 2); for instance, if Cl is exchanged with the H-atom in CH₄, the ionization potential will decrease from 12.98 to 11.28 eV. The difference in ionization potentials between Cl₂ and CH₃Cl is 0.2 eV, yet the ionization potential value of CCl₄ is about the same as that of Cl₂ indicating that the non-bonding electron of the Cl-atom in Cl₄ is similar to that of Cl₂. Hence, any further substitution of Cl-atoms in CH₃Cl will increase the ionization potential value up to that of CCl₄. Similar ionization potential decrease⁵ is found in dichloroethane and dichloropropane relative to ethyl chloride and chloropropane with subsequent increase in ionization potential if we substitute additional Cl-atoms. The same can be also said of other halogenated (F, Br, I) hydrocarbons^{5,10,18}. Clearly, the ionization potential values and the configurational and spectral properties of the "parent" molecular framework are affected by the substituent atom. In view of the presented data (Tables 1 and 2; Figs. 1-3) the

(a) 1- halópropanes : 2 equivalent skew forms

(b) 2-halopropanes

(# indicates that H-atom lies above and below central plane of the molecule)

Fig. 3. Molecular configurations (not to scale) of 1-halopropanes, 2-halopropanes and cis-1-halopropenes. question arises: do indeed the torsional frequencies (structural and spectral property) follow the same sequential pattern of changes as displayed by the variations found in ionization potential values upon introduction of substituent atoms in the framework of the "parent" molecule. This query in principle could be answered by the many currently used molecular orbital calculation methods used to study the behavior of configurational and spectral characteristics of molecules^{5,10,12,17-21}.

Indeed, if we compare the magnitudes of energies involved (torsional frequency as compared to the energy of the ionization potential), it may well be conceived that the torsional frequency changes, characterizing the variation of the energy found in the rotational barrier to the internal rotation, may form a measure of regularly occurring second-order energy perturbations when taken with respect to the distribution of exchange energy of delocalized electrons found over the molecule and given as the ionization potential.

Indirectly these behavioral patterns may be observed through the study of the established empirical relations between the torsional frequencies and molecular ionization potentials (for instance $\tau - \Lambda$ diagrams, this work) along the structurally similar molecules. When smooth connections of this type can be established confidence in the used torsional frequency and the photoelectron spectra (ionization potential) data is increased and further relations between geometric and energetic parameters describing the internal rotational barrier may be deduced.

In this work we listed $\tau - \Lambda$ (or torsional frequency-ionization potential) relations for *skew*-1-halopropanes, 2-halopropanes and *cis*-3-halopropenes.

Earlier we have indicated similar relations for alkyl halides and 1-fluoro-2-haloethanes^{1,2}. Systematic availability of photoelectron spectral data and molecular ionization potentials are needed to study further the behavior of internal rotational barrier.

ACKNOWLEDGEMENT

The financial assistance of the National Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 J. Lielmezs and J. P. Morgan, Nature, 202 (1964) 1106.
- 2 J. Lielmezs and B. J. Hagan, Theor. Chim. Acta (Berlin), 15 (1969) 89.
- 3 L. Pauling, Proc. Nat. Acad. Sci., U.S.A., 44 (1958) 211.
- 4 E. B. Wilson, Jr., Proc. Nat. Acad. Sci., U.S.A., 43 (1957) 816.
- 5 K. Watanabe, T. Nakayama and J. Mottl, J. Quant. Spectr. Radiat. Transfer, 2 (1962) 369.
- 6 G. N. Gayles and W. T. King, Spectrochim. Acta, 21 (1965) 543.
- 7 K. Radcliffe and J. L. Wood, Trans. Faraday Soc., 62 (1966) 1678.
- 8 J. R. Durig, S. M. Craven and J. Bragin, J. Chem. Phys., 53 (1970) 38.
- 9 K. D. Moeller, A. R. De Meo, D. R. Smith and L. H. London, J. Chem. Phys., 47 (1967) 2609.
- 10 D. A. De Meo and M. A. El-Sayed, J. Chem. Phys., 52 (1970) 2622.
- 11 W. G. Fateley and F. A. Miller, Spectrochim. Acta, 19 (1963) 611.
- 12 G. W. Mines and H. W. Thompson, Spectrochim. Acta, 29A (1973) 1377.
- 13 R. D. McLachlan and R. A. Nyquist, Spectrochim. Acta, 24A (1968) 103.

- 14 P. W. Brier, J. Mol. Spectrosc., 6 (1970) 23.
- 15 R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta, 21 (1965) 169.
- 16 K. W. Logan, H. R. Danner, J. D. Gault and H. Kim, J. Chem. Phys., 59 (1973) 2305.
- 17 W. L. Smith, Mol. Phys., 26 (1973) 361.
- 18 F. Brogli and E. Heilbronner, Helv. Chim. Acta, 54 (1971) 1423.
- 19 H. J. Lempka, T. R. Passmore and W. C. Price, Proc. Roy. Soc. A., 304 (1968) 53.
- 20 P. A. Straub and A. D. McLean, Theor. Chim. Acta (Berlin), 32 (1974) 227.
- 21 R. S. Mulliken, J. Chem. Phys., 3 (1935) 514.