Thcrmochinrica **Acra, 17 (1976) 3 19-323 c?** Elxvicr **Scientific Publishing Company, Amsterdam - Printed in EkIgium**

THERMAL DECOMPOSITION OF HYDRAZINIUM MONOPERCHLORATE IN THE SOLID STATE

L'. R- PAI VERNEKER AND A. NAGARAJA SHARMA

High Energy Solids Laboratory, Department of Inorganic and Physical Chemistry, *Indian Institute of Science, Bangalore-560012 (India)*

S. **R_ JAIN**

Propellant Chemistry Laboratory, Department of Aeronautics, *Indian fnstirurc of Science. Bangalore 540012 (India)* **(Received IZ April 19761**

ABSTRACT

Hydnzinium monoperchiorate (HP-i) has been shown to decompose thermally in the solid state according to the chemical equation:

 $5N_2H_5ClO_4 = 4NH_4ClO_4 + 1HCl + 3N_2 + 4H_2O$

The activation energy for the evolution of HCI as determined mass spectrometrically is 8.05 kcal mol⁻¹ in the temperature range of 80 to 120^cC. The rate of decomposition is seen to be altered by doping HP-1 with small concentrations of SO_4^{2-} , Ca^{2+} and Al^{3+} .

INTRODUCTION

The thermal decomposition of HP-I in the solid state does not seem to have been reported in the literature. During the dehydration of hydrazinium monoperchlorate hemihydrate at 70° C, it was observed that the time of dehydration determined the reproducibility of its thermal decomposition in the molten state, Irreproducibility in the behaviour of HP-1 has also been observed¹ in the studies on the burning rate of propellants using 95% of HP-1. HP-1 should also show similarities in chemical and physical behaviour to ammonium perchlorate. All these facts suggested that HP-I could thermally decompose well below its melting point. Some preliminary data on the thermal decomposition of HP-I in the solid state are presented in this investigation.

EXPERIMENTAL

Materials

High purity HP-1 was prepared by neutralizing 60% aqueous perchloric acid with 75% hydrazine at temperatures from 0 to 25°C. The salt precipitates from water at 0° C and was filtered cold through a sintered glass funnel. The fine white crystals **were gently removed with a tefion spatula and placed in a drying tube at 70°C for 2 h at a constant vacuum of 0.05 mm of Hg to dehydrate the hemihydrate- Samples were titrated to a phenolphthalein end point with 0.1 N NaOH. The characteristic purity fador ranged from 992 to 99_8%_**

The solid state decomposition of HP-I is a very stow process requiring five days for the complete decomposition at 125°C. Hence, the bulk of the data has been obtained only on the very initial stages of decomposition, followed by an AEI-MS-10 **mass spectrometer connected to a constant volume system via a mokcular leak_ For stoichiometric analysis, stcdies were also conducted on HP-I in weighing bottles maintained at desired temperatures_ The final residue was anal_yzed quantitatively for** HP-1 and ammonium perchlorate by chemical methods and also by infrared (IR) **spectra**

RESULTS

When 165 mg of N₂H₃CIO₄ are heated in a weighing bottle at 120 °C, a weight loss is observed amounting to 29% at the end of the run shown in Fig. 1. An IR **spectrum of the residue in Nujol mull shows the absence of HP-I and the presence of NH,CIO~. Volumetric analysis confirms the IR observations.**

fig. 1. Weight loss plotted against the time of heating HP-1 at 120°C.

The gaseous products of the thermal decomposition of HP-1 as analyzed by **the mass spectrometer connected to a constant voIume vacuum system (initial** pressure of 1×10^{-5} torr) are listed in Table 1.

An analysis of the cracking patterns leads us to eliminate masses 14 and 17 ieaving the parent peaks at masses l&28,36 and 38. From the probable assignments made in Table i, the fmaI decomposition species seem to be water, nitrogen and hydrochloric acid- **TABLE 1**

THE DECOMPOSITION SPECIES OF HP-1 AT 1OO'C IN A CONSANT VOLUME SYSTEM CONNECTED VIA A MOLECULAR LEAK TO THE MASS SPECTROMETER

The peak heights (Table 1) are given in terms of ion current which is good for identification purposes. Relative partial pressures can, however, be obtained by the relationship:

relative pressure
$$
(P)
$$
 = $\frac{\text{ion current } (i)}{\text{relative cross-section } (\sigma)}$ (1)

The relative cross-sections for the species involved in the present work, are available from the works of Otvos and Stevenson' and Pottie3. The relative pressures calculated from eqn (1) are given in Table 2.

TABLE 2

RELATIVE PARTIAL PRESSURES OF THE DECOMPOSITION SPECIES IN HP-1 AT 100°C

TABLE 3

EFFECT OF DOPING HP-I ON THE EVOLUTION OF HCI AT 110°C

Fig. 2. Isothermal decomposition of HP-1 at 90°C (O); 100°C (\triangle); and 110°C (\bullet). Evolution of HCI expressed as ion current plotted against the time of heating.

Fig. 3. Arrhenius plot for the decomposition of HP-1.

The decomposition species were also determined at 125°C and found to be the same as at 100°C

The isothermal runs on the dcwmposition of HP-l were carried out in the temperature range 90 to llO"C, monitoring the evolution of HCL This is shown in Fig. 2. Activation energy (E_A) was calculated from the initial slopes of the α (*t*) plots. (shown in Fig. 3) and found to be 8.05 kcal mol⁻¹. The effect of doping HP-1 with SO_4^{2-} , NH¹⁺, Ca^{2+} and Al³⁺ in the subsequent rate of evolution of HCl is shown in **Table 3.**

DISCUSSION

The weight loss measurements (Fig. 1) and the mass spectrometric data (TabIes 1 and 2) Iead us to the folIowing chemical reaction for the solid state thermal decomposition of HP-l:

$$
5N_2H_5ClO_4 = 4NH_4ClO_4 + 1HCl + 3N_2 + 4H_2O
$$
 (2)

With the available data it is difficult to put forth any definite mechanism. One could **speculate that the mechanism involves a proton transfer leading to the formation** of N_2H_4 and $HClO_4$. The evolution of N_2H_4 may be inferred from the presence of **small concentrations (ion currents not iisted in the mass spectrometric data presented** in Table 1 because the concentrations are very small) of masses 15(NH), 16(NH₂), $30(N_2H_2)$, $31(N_2H_3)$ and $45(N_3H_3)$. The E_A of 8.05 kcal mol⁻¹ may then refer to the E_A of the heterogeneous thermal decomposition of $HClO₄$. However, the effect of doping HP-1 with intentional impurities (Table 3) suggests that whereas anion **vacancies sensitize the decomposition, cation vacancies desensitize the reaction. Univalent ions like NH,' do not alter the decomposition rate. Assuming a Schottky** defect structure, this could mean that the migrating species is the perchlorate ion. **A Frenkel defect structure, on the other hand, would suggest the migration of an interstitial N₂H₅⁺ ion. The low value of the** E_A **(8.05 kcal mol⁻¹) may well signify** that the rate determining step involves the migration of one of the ions $N_2H_5^+$ or **CIO; to the preferential sites, where proton transfer could be envisaged.**

_ **REFERENCES**

1 **J. B. Levy, G. Von Elbe, R. Friedman, T. Wallin and S. J. Adams, Advanced Propellant Chemistry,** Advances in Chemistry Series, ACS Publications, 1966, p. 55.

2 J. W. Otvos and D. J?. Stevenson, *J. Am. Chem. Sot.. 78 (1956) 546.*

3 **R. F. Pottic, I.** *Ckm. H'ys.., 44 (1966)* 916.