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Among the most important methods used to determine the kinetic parameters 
of solid phase reactions, K-e can point out the non-isothermai methods’-3. One of the 
approsimations these methods are based on, consist in the identification of the sample 
temperature with the pro_gammed one. In fact, the reactions that occur in the sample, 
take place with an absorption or with a heat release. This fact leads to the deviations 
of the sample temperature from the progammcd one. In this paper we aim to find a 
temperature pro_gamme for which the avera_ge difference between the sampfe 
temperature and the programmed one should be minimum. The necessity of solving 
this problem to increase the accuracy of the kinetic pzxameter values, was pointed 
out by Sestak and Berggren’. 

THEORY 

For simplicity sake, we shall ne&xt the thermal in&tia of the crucible and of 
the sample. We shall also neglect the variation of sample heat capacity_ Under these 
conditions the equation of heat balance is: 

d(rzrAH)+zzzcdIJr) =zzzcdT(r) (1) 

or 

zzAH dz d(T-TC) --= 
mc dt dt 

(1’) 

where: nz, c = mean specific heat and mass of the reaction system: 

AH = the thermal effect of the reaction; 
n = the amount of reactant (in moles); 
x = the conversion de_gree of the reaction: 

T,(f) = the programmed temperature; 
7-0) = the sample temperature. 
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Considering that the mode1 of the reaction order is valid, it follows that: 

dr - = f(r)Ze-E/J= 
dr 

(3 

where f(z) = (1 -z)“_ 

Writing the function T’(I) in the form T,(I) = T,<(/?t) (</3> = time- I and 

c(O) = I) and introducing the dimensionless magnitudes: 

and 9 = j?f the eqns (1’) and (2) become: 

and 

(3) 

integration of eqn (3) gives: 

0% (4 f 5 (tl) = 0 01) 

From the relationships (4) and (5) it follows that: 

(9 

dO 
- = <‘(q)+abf 
drl 

(y)exp[-i] (6) 

The variation. in time of the sample temperature folIows from the integration of 
eqn (6). To inte_mte eq$ (6) we take the iteration method using the recurrence 
formula; 

For OO(q), we consider the value e(q). If o is smail. then 0 and < are close enough and 

therefore se can stop at the first iteration: 

O(q) r 0, (q) = <(tj)+ab 
_f:=P[ - &]dq 

6) 

Even if Q is small, the validity of eqn (8) is limited. Unlike U(~I) which approaches 
c(q) asymptotiuliy for q + Z. 0, is continually removing from e(q) as q is increasing. 
As we can see in Fig. I, we can consider that for a given time smaller than tSl = 2p 
corresponding to the maximum of the difference iQ(q)-c(r#, 0, (II) z O(q). 

As we have already mentioned, our aim is to find the temperature pro_g-ramme 
which minimizes the mean vaIue of the difference IT’(t)- T(t)1 or, in other words? 
to find the programme that minimizes the area limited by the curves T= T(t) and 
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Fig. I_ 0. cIf and 0. versus dimensionless time 4. 

T, = T.(f )_ The problem can be reduced to the calculus of the functional (9) extre&m: 

1’ = (T,(r)--7-(r))dr 

or 

P -x 
I=-_‘_= J T,ab o 

(0 - 5) d?l 

(9) 

(9’) 

As for 0 we have a formula approximately valid up to the moment I~, = /?I_, we have 
to substitute the upper bound of the integral (9’) by 2. The problem, formulated in 
this way, leads to a banal result (c(q) = const.). To find a sigificant result from the 
sum of functions <(zl) we have to choose a set which may offer the same property and 
among the elements of this set we have to look for the function E(q) which achieves 
the extremum of the functional (9’). if, for instance we choose all the programmes 
that lead to the same average temperature T, = 5, To, the isoperimetric condition 
that has to be taken into account is the foIlowing: 

By introducing the function _r’(~l) = ce- ri5 djl and taking into account eqns (8), (9’) 
and (IO), it follows that the problem leads to the finding of the functional extremum: 
I’ = 5: 3;drl with the isoperimetric condition JI = -cjt dgjln _I” and the boundary 
conditionsr_(O) = 0 and J-(L) = const. 

Using the theorems of the variational calcu!us we get: 



As 1 j_f (In y ‘)’ = <;‘c2 &it from (I 2), by integration, we have: g2ecic = pq + b. Taking 

into account that t(O) = 1 we have b = ec and <‘ec’c = pq +ec (13) or: 

where JL’ is determined from the condition: 

X 
Grs, = 

r 
T(t) dt 

0 

To put into practice the eqn (I 3’) of the extremal procmamme we shall use the 
following approximations: 

(I j As the pre-exponential term T’ varies by Iess than the exponential itseif, we 
shall substitute within this term the temperature T by its mean value T = (To+ T.,3/2_ 

(2) As the vahre of the activation energ E, which appears in eqn (13’) is 
unknown (but it is going to be determined) we substitute its value for a magnitude E. 
which wiI1 be considered as an adjustment parameter. 

Under such conditions, eqn (13’) becomes: 

fe”lRr = eEo!RTo (1 iLr) 

= p’e-&“‘RTo ; f = 

From eqns (2) and (14) we get: 

(14) 

Because of its compIexity eqn (15) can be used in the determination of the kinetic 
parameters using only the differential methods- From eqn (IS), through logarith- 
mation, it turns out that.z 

iog~=Iogz+nIog(l-a)-~log ( ;I;) 

0 

ey=o(l 
> 

(15’) 

From eqn (IS’) we can determine the values Iog 2, n and E,‘E, making use of the 
bilinear re_msion equations_ 

We can also use some variants of the Freeman-Carroll method’. From eqn (15’), 

it foliows that: 

A log; E =n- 
A log {l-a) EoA log (1 -a) 

A log 



A log 

Alog% 
dcc E. 

EA Iog z 
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(16’3 

AII these refationships can be used to determine the kinetic parameters. 

The thermo_mms were recorded with the help of a Paulik, PauIik and Erdey6 
derivatopaph_ The dehydration of calcium oxalate was carried out in air. We used a 
temperature programme which in the interval 423 K d Td 508 K is described by the 
equation: 

(K)T = 
2461 

(<f> = minutes) 

The kinetic parameters were determined from eqns (I 5’) and (16) using the 
least squares method_ The obtained resuhs together with the values obtained by means 
of a hyperbolic programme’ and with the values obtained with the DTA method7m8, 
are tabulated in Table 1. We can notice a satisfactory agreement between the results 
obtained with the three methods. 

TABLE I 

THE VALUES OF KINETIC PARAMETERS FOR 
C_.%LCIUM OSALATE DEHYDRATION 

n E Z 
(kcal mol- ‘) (54x- 1) 

Eqn (153 0.97 339 7.32 x 106 

Eqn (16j 0.93 22.4 7.43 x 106 
Hyperbolic programme 1 23.5 SX106 
DTA method 1 21.8 6.23 x IO6 

The minimal character of the programme was checked up by comparison with 
a linear reference pro_mmme_ 
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We have to make a note concerning the temperature programme. Theoretically, 
the adjustment parameter E, should have a magnitude order of the activation 
energies (XI-30 kcal mot- I)_ But too hi& vafues of the E. parameter lead to too 
high heating rates. These rates cause impediments in the diffusion of the gaseous 
reaction products_ That is why the E0 parameter has to remain below the value of 
8 kcai mo1- * - 

An appro?rimate formula has been found for the temperature prosramme which 
minimizes the deviation of the sample temperature from the programmed one_ In our 
calculations we started from the validity of the reaction order model. The suggested 
pro,oramme was checked up through the determination of the kinetic parameters of 
caIcium oxakite dehydration. The pro_g-amme can be used oniy in the determination 

of the kinetic parameters, making use of the differential methods. 
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