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Among the most important methods used to determine the kinetic parameters
of solid phase reactions, we can point out the non-isothermal methods'~3. One of the
approximations these methods are based on, consist in the identification of the sample
temperature with the programmed one. In fact, the reactions that occur in the sample,
take place with an absorption or with 2 heat release. This fact leads to the deviations
of the sample temperature from the programmed one. In this paper we aim to find a
temperature programme for which the average difference between the sample
temperature and the programmed one should be minimum. The necessity of solving
this problem to increase the accuracy of the kinetic parameter values, was pointed
out by Sestak and Berggren?®.

THEORY

For simplicity sake, we shall neglect the thermal in&rtia of the crucible and of
the sample. We shall also neglect the variation of sample heat capacity. Under these
conditions the equation of heat balance is:

d(nxAH)Y+mcdT (1) =mcdT (@) ¢))
or »

AH d d(T—-T, .
nAH dx _ (dt ) )

mc dt

where: m, ¢ = mean specific heat and mass of the reaction system:

AH = the thermal effect of the reaction;

n = the amount of reactant (in moles):

x = the conversion degree of the reaction:
T_(t) = the programmed temperature;

T(t) = the sample temperature.
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Considering that the model of the reaction order is valid, it follows that:

dx_ f(x)Ze 5/RT )
di
where f(x) = {1 —x)".

Writing the function 7_(7) in the form T_.(t)= ToZ(Br) ({B> =time™ ! and
£(0) = I) and introducing the dimensionless magnitudes:

= nAH : bzgz c= E 0= T and 7 = ft the eqns (1') and (2) become:
Tymc B RT, To

d de _,

a ="z 3)
dn dn

and
dz _ bf(x)e™ ¢ ()
dn

’

integration of eqn (3) gives:

ax(n)+&(n) =0y &)
From the relationships (4) and (5) it follows that:

90 _ = m)+abf (0_§) cxp[— 5} (6)

dn a 0

The variatiorn in time of the sample temperature follows from the integration of
eqn (6). To integrate eqg (6} we take the iteration method using the recurrence
formula:

7 —Z
O:.(m) = E(n)+ab [ f(g‘ﬂ—‘("—)) exp [— OC ]drz (7

For 04(r), we consider the value S (i7). If @ is small, then 0 and £ are close enough and
therefore we can stop at the first iteration:

7
0(m) = 0,(n) = EGp)+ab f exp [— ;—C—]dn (8)
Jo

Even if a is small, the validity of eqn (8) is limited. Unlike @(;;) which approaches
< (1) asymptotically for n — oo, 0, is continually removing from £(#) as n is increasing.
As we can see in Fig. 1, we can consider that for a given time smaller than 7, =2
corresponding to the maximum of the difference [8(7)—Z ()], 0, (n) = O(y).

As we have already mentioned, our aim is to find the temperature programme
which minimizes the mean value of the difference |7_.(1)— T(¢)} or, in other words,
to find the programme that minimizes the area limited by the curves 7= 7T(r) and
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Fig. 1. 0. & and 0. versus dimensionless time 77.

T. = T_(t). The problem can be reduced to the calculus of the functional (9) extrerrfum:

I = r (T.()—T(n))dt 9
Jo
or
r ﬂ ’z 2 - r
I=—1 = 0-3o)d 9
T.ab Jo O—-3)dn “)

As for 0 we have a formula approximately valid up to the moment 7., = f3/, we have
to substitute the upper bound of the integral (9’) by /. The problem, fcrmulated in
this way, leads to a banal result (£(#7) = const.). To find a significant result from the
sum of functions & (7)) we have to choose a set which may offer the same property and
among the elements of this set we have to look for the function £(;7) which achieves
the extremum of the functional (9°). If, for instance we choose all the programmes
that lead to the same average temperature 7,, =£_, T, the Isoperimetric condition
that has to be taken into account is the following:

~-
A

h=2Cnt= . ¢(mdn (10)
By introducing the function »(i7) = {Te™“* dy and taking into account eqns (8), (9")
and (10), it follows that the problem leads to the finding of the functional extremum:
I'= j: ydn with the isoperimetric condition /1 = —cj; dn/ln ¥ and the boundary
conditions ¥(0) = 0 and y(2) = const.

Using the theorems of the variational calculus we get:

(7, ¥, 11, @) = J ‘(—“iﬁ_v)dn (11)

o \in y
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d w
drl oy’ (lnv )] cy my ) d,,(),'(m_‘,l)z)—l (12)

As 1/y"(In y')? = &/c?e* from (12), by integration, we have: £2e“* = uy+b. Taking
into account that (0) =1 we have b =e€ and £2e* = un+e€ (13) or:

—=€

-

T

where y’ is determined from the condition:

E/RT E{RTo

=pu't+e

Tty = f T()dr
o

To put into practice the eqn (13”) of the extremal programme we shall use the
following approximations:

(1) As the pre-exponential term TZ varies by less than the exponential itseif, we
shall substitute within this term the temperature T by its mean value T = (To+ T,,,,.)/2-

(2) As the value of the activation energy E, which appears in eqn (13°) is
unknown (but it is going to be determined) we substitute its value for a magnitude E,
which will be considered as an adjustment parameter.

Under such conditions, eqn (13”) becomes:

feFo/RT = eFo/RTo(] + 1)

(/-_ = e EoiRTo £ ('I;) T“)) (19
2T,
From eqas (2) and (14) we get:
dx 1
ds (eEO,RTO 1 —;—J.I)E’ Eo
f

Because of its complexity egn (15) can be used in the determination of the kinetic
parameters using only the differential methods. From eqn (15), through logarith-
mation, it turns out that:

dx E efo/RTo
log—=logZ+nlo l—a)——log( (L+29) (15")
dt g ( E, £
From eqn (15") we can determine the values log Z, n and E]E, making use of the
bilinear regression equations.

We can also use some variants of the Freeman—Carroll method3. Fromeqn (15°),
it follows that:

Al dx
og Eo/RTo
4 _ . E Alog (e a +;z)) (16)
Alog(l—a) EgAlog(1—a)
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Alog
OF dr B Alog (1—2) E g
eE0iRTo =n oEo/RTa - E_ (167
atog(*——at +;.z)) A Iog( — « +;.z)) 0
eEo;'RTo
A I°g( F (“‘"‘)) ZAlog(1—%) E )
d - de  E, (19
Alog = EAlogd®  Fo
dt dt

All these relationships can be used to determine the kinetic parameters.

EXPERIMENTAL

The thermograms were recorded with the help of a Paulik, Paulik and Erdey®
derivatograph. The dehydration of calcium oxalate was carried out in air. We used a
temperature programme which in the interval 423 K < T < 508 K is described by the
equation:

2461

(
i t
5.7+1In (i _
15.2

The kinetic parameters were determined from eqns {i5") and (16) using the
Ieast squares method. The obtained results together with the values obtained by means
of a hyperbolic programme’ and with the values obtained with the DTA method”,
are tabulated in Table 1. We can notice a satisfactory agreement between the resuits
obtained with the three methods.

(K)T =

{t> = minutes)

TABLE 1

THE VALUES OF KINETIC PARAMETERS FOR
CALCIUM OXALATE DEHYDRATION

n E 4
(kcal mol~1*) (sec— ')
Eqgn (157) 0.97 229 7.32x 106
Eqgn (16) 0.93 2.4 7.43 x 10°
Hyperbolic programme 1 23.5 8x 10°
DTA method i 21.8 6.23 x 109

The minimal character of the programme was checked up by comparison with
a linear reference programme.



We have to make a note concerning the temperature programme. Theoreticallv,
the adjustment parameter E, should have a magnitude order of the activation
energies (20-30 kcal mol ™ !). But too high values of the E, parameter lead to too
high heating rates. These rates cause impediments in the diffusion of the gaseous
reaction products. That is why the E, parameter has to remain below the value of
8 kcal mol ™.

CONCLUSIONS

An approximate formula has been found for the temperature programme which
minimizes the deviation of the sample temperature from the programmed one. In our
calculations we started from the validity of the reaction order model. The suggested
programme was checked up through the determination of the kinetic parameters of
calcium oxalate dehydration. The programme can be used only in the determination
of the kinetic parameters, making use of the differential methods.
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