# DÉTERMINATION DES ENTHALPIES STANDARDS DE FORMATION DES ÉTHYLATES ALCALINS SOLVATÉS

# JEAN BOUSQUET, JEAN-MARIE BLANCHARD, PIERRE CLAUDY, JEAN-MARIE LETOFFE ET DANIEL MATHURIN

Laboratoire de Physico-chimie Minérale associé au CNRS No. 116, INSA-20, Acenue Albert-Einstein, 69621 Villeurbanne (France) (Recu le 23 septembre 1975)

### ABSTRACT

 $\Delta H_{f\,293}^{\circ}$  of LiOC<sub>2</sub>H<sub>5</sub>, 2C<sub>2</sub>H<sub>5</sub>OH and NaOC<sub>2</sub>H<sub>5</sub>, 2C<sub>2</sub>H<sub>5</sub>OH have been measured by tensimetric methods. No equilibrium has been observed for KOC<sub>2</sub>H<sub>5</sub>, C<sub>2</sub>H<sub>5</sub>OH; RbOC<sub>2</sub>H<sub>5</sub>, C<sub>2</sub>H<sub>5</sub>OH; CsOC<sub>2</sub>H<sub>5</sub>, C<sub>2</sub>H<sub>5</sub>OH.

Reaction calorimetry in sulfuric acid gave a verification of the tensimetric measurements and  $\Delta H_{f,298}^{\circ}$  of the other ethylates.

### RÉSUMÉ

Les enthalpies standards de formation de  $LiOC_2H_5$ ,  $2C_2H_5OH$  et  $NaOC_2H_5$ ,  $2C_2H_5OH$  ont été déterminées par tensimétrie. Il n'a pas été possible d'obtenir un équilibre pour  $KOC_2H_5$ ,  $C_2H_5OH$ ;  $RbOC_2H_5$ ,  $C_2H_5OH$ ;  $CsOC_2H_5$ ,  $C_2H_5OH$ .

La calorimétrie de réaction en milieu sulfurique a permis de vérifier les mesures tensimétriques et de déterminer les  $\Delta H_{1298}^{\circ}$  des autres éthylates.

### (I) INTRODUCTION

Nous avons signalé lors de l'étude thermodynamique des éthylates alcalins<sup>1,2</sup> l'existence de différents solvates qui font l'objet du présent travail. Nous avons déterminé les pressions de vapeur des solvates des éthylates alcalins de formule générale:

 $MOC_2H_5$ ,  $xC_2H_5OH$  (x = 2 pour M = Li, Na, et x = 1 pour M = K, Rb, Cs).

Comme nous n'avons pu observer d'équilibre du type :

$$MOC_2H_5$$
,  $xC_2H_5OH(c) \Rightarrow MOC_2H_5(c) + xC_2H_5OH/(g)$ 

que dans le cas de  $LiOC_2H_5$ ,  $2C_2H_5OH(c)$  et  $NaOC_2H_5$ ,  $2C_2H_5OH(c)$ , il ne nous a pas été possible de déterminer toutes les enthalpies standards de formation des solvates à partir des données thermodynamiques relatives aux composés désolvatés<sup>1,2</sup> et des données issues de l'étude tensimétrique. Aussi, nous sommes-nous alors orientés vers la calorimétrie de réaction en milieu acide sulfurique. La réaction générale qui nous permet de déterminer les enthalpies de formation de ces solvates se schématise selon :

 $2MOC_2H_5, xC_2H_5OH(c) + H_2SO_4(aq) \rightarrow M_2SO_4(aq) + 2(1+x)C_2H_5OH(aq)$ 

### (II) PARTIE EXPÉRIMENTALE

### (1) Préparation des produits

(a) Les éthylates de lithium, sodium, potassium sont préparés selon le schéma réactionnel suivant (1) :

$$M(c) + C_2 H_5 OH_{(liq. exces)} \rightarrow MOC_2 H_{5(sol C_2 H_5 OH)} + \frac{1}{2} H_2 / (g)$$
  
M = Li, Na, K

Les éthylates solvatés sont ensuite isolés à partir de la solution.

En fait, nous avons préparé dans le cas du lithium et du sodium différents composés ou mélanges biphasés :

L'action directe du métal sur l'alcool en excès nous a donné :

$$LiOC_2H_5$$
,  $2C_2H_5OH-LiOC_2H_5$ ,  $1,92C_2H_5OH-NaOC_2H_5$ ,  $1,04C_2H_5OH$ 

L'action de l'alcool gazeux (en vapeur saturante) sur l'éthylate désolvaté nous a fourni :

$$LiOC_2H_5$$
, 1,30 $C_2H_5OH$  et  $NaOC_2H_5$ , 1,625 $C_2H_5OH$ 

Nous avons obtenu l'éthylate de sodium disolvaté grâce à l'action de l'alcool gazeux (en vapeur sèche) provenant d'une quantité connue d'éthylate de lithium disolvaté sur une quantité connue d'éthylate de sodium à  $1,04C_2H_5OH$  (mélange biphasé de NaOC<sub>2</sub>H<sub>5</sub>(c) et de NaOC<sub>2</sub>H<sub>5</sub>,  $2C_2H_5OH$ (c)) selon le schéma réactionnel suivant :

$$LiOC_2H_5, 2C_2H_5OH(c) \rightarrow LiOC_2H_5(c) + 2C_2H_5OH/g$$
 (1)

$$NaOC_{2}H_{5}(c) + 2C_{2}H_{5}OH(g) \rightarrow NaOC_{2}H_{5}, 2C_{2}H_{5}OH(c)$$
(2)

L'équilibre (1) est constamment déplacé par la réaction (2) car, comme nous le verrons par la suite,  $p_{eq_2} < p_{eq_1}$  pour une même température.

(b) Les éthylates de rubidium et de césium ont été préparés selon la méthode de Revzin<sup>2,3</sup> qui permet d'obtenir des éthylates de très bonne pureté selon :

$$MF_{(sol C_2H_5OH} + Na(c) + C_2H_5OH_{(liq. exces)} \rightarrow NaF\downarrow(c) + MOC_2H_{5(sol C_2H_5OH)} + \frac{1}{2}H_2 \nearrow (g)$$
$$M = Rb, Cs$$

Étant donné la grande sensibilité à l'oxygène et à la vapeur d'eau des éthylates alcalins, toutes les manipulations sont effectuées en atmosphère d'argon rigoureusement désoxygéné et sec<sup>4,5</sup>.

### (2) Analyse chimique

Elle est réalisée sur des échantillons qui sont dissous dans de l'eau permutée, puis dosés par de l'acide sulfurique 0,1 N par potentiométrie.

Les résultats de ces dosages, reproductibles à mieux de 0,5% sur différents échantillons d'un même composé sont indiqués dans le Tableau 1.

| Composé<br>$MOC_2H_5, xC_2H_5OH$                                     | Masse molaire<br>(g) | Titre pondéral<br>théor. (M) | Titre pondéral<br>exp. (M) |  |
|----------------------------------------------------------------------|----------------------|------------------------------|----------------------------|--|
| LiOC <sub>2</sub> H <sub>5</sub> , 2C <sub>2</sub> H <sub>5</sub> OH | 144,14               | 4,814                        | 4,81                       |  |
| $N_2OC_2H_5$ , $2C_2H_5OH$                                           | 160,19               | 14,35                        | 14,2                       |  |
| KOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH   | 130,23               | 30,02                        | 30,0                       |  |
| RbOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH  | 176,60               | 48,40                        | 48,3                       |  |
| CsOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH  | 224,04               | 59.32                        | 59,1                       |  |

TABLEAU 1

### (3) Analyse radiocristallographique

Les distances interréticulaires de chacun des éthylates de formule générale  $MOC_2H_5$ ,  $xC_2H_5OH$  (x = 0 ou 2 pour M = Li, Na, et x = 0 ou 1 pour M = K, Rb, Cs) ont été déterminées dans un précédent travail<sup>6</sup>.

### (4) Dispositif tensimétrique

Ce dispositif est constitué d'un manomètre à mercure relié à un réservoir de 25 cm<sup>3</sup> en verre Pyrex soigneusement dégraissé et séché contenant une masse connue d'éthylate solvaté.

Une pression réduite  $(5 \cdot 10^{-3}$  torr environ) est réalisée dans les deux parties du dispositif; pendant le dégazage du mercure, l'éthylate solvaté est refroidi à la température d'ébullition de l'azote sous la pression atmosphérique afin d'éviter une décomposition partielle du solvate.

Lorsque le dégazage est terminé, l'ensemble est scellé. Le manomètre ainsi préparé est ensuite totalement immergé dans un bac thermorégulé à  $\pm 1/20$  de degré. La cinétique de la réaction est rapide dans les deux sens, mais il faut attendre au moins 12 h pour obtenir l'équilibre du bain thermostaté. Les dénivellations sont mesurées au cathétomètre au 1/100 de mm. Les corrections habituelles (ménisques, masse volumique) sont effectuées.

### (III) MESURES TENSIMÉTRIQUES

### (1) Cas de $LiOC_2H_5$ , $2C_2H_5OH$ et de $NaOC_2H_5$ , $2C_2H_5OH$

Dans notre étude, nous avons toujours travaillé sur deux échantillons de teneurs différentes en alcool pour un même solvate; dans le cas de l'éthylate de lithium disolvaté, nous avons utilisé trois manomètres remplis d'un même produit en quantités très différentes afin de pouvoir mettre en évidence une éventuelle miscibilité à l'état solide.

LiOC<sub>2</sub>H<sub>5</sub>, 1,30C<sub>2</sub>H<sub>5</sub>OH

| Variation<br>de temp. | に<br>(°C) | T<br>(K) | 1/T(K)·10 <sup>3</sup> | p <sub>e</sub><br>(mmHg <sub>n</sub> ) | Pe<br>(atm· 10 <sup>3</sup> ) | log <sub>10</sub> p <sub>e</sub> |
|-----------------------|-----------|----------|------------------------|----------------------------------------|-------------------------------|----------------------------------|
| \.<br>\.              | 19.4      | 292,55   | 3,4182                 | 5,76                                   | 7,58                          | -2,2105                          |
| 7                     | 22.9      | 296.05   | 3.3778                 | 7.92                                   | 10.42                         | -1.9822                          |
| 7                     | 26.0      | 299.15   | 3.3428                 | 10.30                                  | 13.55                         | -1.8680                          |
| 7                     | 28.8      | 301,95   | 3,3118                 | 15,15                                  | 19,23                         | -1,7004                          |
| 7                     | 32,0      | 305.15   | 3,2770                 | 19,54                                  | 25,71                         | -1,5898                          |
| 7                     | 35.9      | 309,05   | 3,2357                 | 25,80                                  | 33,96                         | -1,4690                          |
| 7                     | 39.3      | 312,45   | 3,2005                 | 34,19                                  | 44,98                         | -1.3470                          |
|                       | 40,2      | 313,35   | 3,1913                 | 38.67                                  | 50,88                         | - 1,2935                         |
| く しょう                 | 42,4      | 315,55   | 3,1691                 | 45,30                                  | 59,61                         | -1,2247                          |
| え                     | 42,4      | 315,55   | 3,1691                 | 43,60                                  | 57,37                         | -1,2414                          |
| 7                     | 46,0      | 319,15   | 3,1333                 | 57,98                                  | 76,29                         | -1,1175                          |
|                       | 46,75     | 319,9    | 3,1260                 | 62,31                                  | 81,99                         | -1,0862                          |
| え                     | 48,8      | 321,95   | 3,1061                 | 72,82                                  | 95,81                         | -1,0186                          |
| 7                     | 52,1      | 325,25   | 3,0746                 | 92,69                                  | 121,96                        | -0,9138                          |
|                       | 53,8      | 326,95   | 3,0586                 | 102,58                                 | 134,98                        | -0,8697                          |
| ブ                     | 55,3      | 328,45   | 3,0446                 | 112,28                                 | 147,7                         | -0,8305                          |
| 7                     | 59,0      | 382,15   | 3,0107                 | 136,94                                 | 180,19                        | -0,7443                          |
| 7                     | 62,3      | 335,45   | 2,9811                 | 160,72                                 | 211,48                        | -0,3747                          |
| 7                     | 64,5      | 337,65   | 2,9617                 | 181,56                                 | 238,90                        | -0,6218                          |
| 7                     | 67,3      | 340,45   | 2,9373                 | 208,07                                 | 273,80                        | -0,5626                          |
| 7                     | 68,6      | 341,75   | 2,9261                 | 224,85                                 | 295,86                        | -0,5289                          |

# TABLEAU 3

 $LiOC_2H_5$ , 1,92 $C_2H_5OH$  (manomètre No. 1)

| Variation<br>de temp. | t<br>(°C) | T<br>(K) | 1/T(K)·10 <sup>3</sup> | ₽ <sub>e</sub><br>(mmHg <sub>z</sub> ) | ₽ <sub>c</sub><br>(atm•10 <sup>3</sup> ) | log <sub>10</sub> p <sub>e</sub>      |
|-----------------------|-----------|----------|------------------------|----------------------------------------|------------------------------------------|---------------------------------------|
|                       |           |          | •                      |                                        |                                          | · · · · · · · · · · · · · · · · · · · |
| 7                     | 19,4      | 292,55   | 3,4182                 | 8,56                                   | 11,26                                    | - 1,9485                              |
| 7                     | 25,2      | 298,35   | 3,3518                 | 10,66                                  | 14,03                                    | -1,8530                               |
|                       | 28,8      | 301,95   | 3,3118                 | 16,79                                  | 22,09                                    | -1,6557                               |
| ブ                     | 32,0      | 305,15   | 3,2770                 | 20,15                                  | 26,52                                    | -1,5763                               |
| 7                     | 35,9      | 309.05   | 3,2357                 | 27,04                                  | 35,58                                    | -1,4488                               |
| 7                     | 39,3      | 312,45   | 3,2500                 | 35,34                                  | 46,50                                    | -1,3326                               |
| 7                     | 41        | 314,15   | 3,1832                 | 38,97                                  | 51,27                                    | -1,2901                               |
| 7                     | 42,4      | 315,55   | 3,1691                 | 44,89                                  | 59,06                                    | -1,2287                               |
| ς.                    | 45.0      | 318.15   | 3,1432                 | 77,20                                  | 101,58                                   | -0,9932                               |
| え                     | 46,0      | 319,15   | 3,1333                 | 59,45                                  | 78,23                                    | -1,1066                               |
| 7                     | 48,8      | 321,95   | 3,1061                 | 74,58                                  | 98,13                                    | -1,0082                               |
|                       | 50.35     | 323,50   | 3,0912                 | 86.74                                  | 114,14                                   | -0.9426                               |
| 7                     | 52.1      | 325.25   | 3.0746                 | 111,52                                 | 146,70                                   | -0,8334                               |
| 7                     | 53.8      | 326,95   | 3,0586                 | 125,66                                 | 165,30                                   | -0,7816                               |
| 7                     | 55.0      | 328,15   | 3,0474                 | 131,99                                 | 173,67                                   | -0,7603                               |
| 7                     | 55.2      | 328.45   | 3,0446                 | 136.20                                 | 179.20                                   | -0,7466                               |
| 7                     | 59.0      | 322,15   | 3,0107                 | 165,80                                 | 218,16                                   | -0,6612                               |

# 318

TABLEAU 3 (suite)

| Variation<br>de temp. | t<br>(°C) | Т<br>(К) | 1/T(K)·10 <sup>3</sup> | pe<br>(mmHg <sub>s</sub> ) | Pe<br>(atm· 10 <sup>3</sup> ) | log 10 Pe |
|-----------------------|-----------|----------|------------------------|----------------------------|-------------------------------|-----------|
| 7                     | 60,3      | 333,45   | 2,9989                 | 174,38                     | 229,45                        | -0,6393   |
| 7                     | 60,7      | 333,85   | 2,9954                 | 173,73                     | 228,59                        | -0,6409   |
| 7                     | 62,3      | 335,45   | 2,9111                 | 195,04                     | 265,63                        | -0,5907   |
| 7                     | 63,8      | 336,95   | 2,9678                 | 208,78                     | 274.71                        | -0,5611   |
| ブ                     | 64,5      | 337,65   | 2,9617                 | 221,12                     | 290,94                        | -0,5306   |

 $LiOC_2H_5$ , 1,92 $C_2H_5OH$  (manomètre No. 2)

| Variation<br>de temp. | t<br>(°C) | T<br>(K) | ]/T(K)· ]0 <sup>3</sup> | Pe<br>(mmHg <sub>n</sub> ) | p <sub>e</sub><br>(atm· 10 <sup>3</sup> ) | log10 Pe |
|-----------------------|-----------|----------|-------------------------|----------------------------|-------------------------------------------|----------|
|                       | 19.4      | 292.55   | 3.4182                  | 6.71                       | 8.84                                      | - 2.0538 |
| ×.                    | 22.9      | 296.05   | 3.3778                  | 10.08                      | 13,26                                     | -1,8774  |
| 7                     | 26,0      | 299,15   | 3,3428                  | 12,32                      | 16,31                                     | -1,7902  |
| 7                     | 28,8      | 301,95   | 3,3118                  | 16,79                      | 22,09                                     | -1,6557  |
| 7                     | 32,0      | 305,15   | 3,2770                  | 21,74                      | 28,60                                     | -1,5436  |
| 7                     | 35,9      | 309,05   | 3,2357                  | 29,69                      | 39,07                                     | -1,4081  |
| 7                     | 39.3      | 312.45   | 3,2005                  | 38.41                      | 50.54                                     | -1.2964  |
| 7                     | 42.4      | 315.55   | 3,1691                  | 48,83                      | 64.25                                     | -1,1922  |
| 7                     | 46.0      | 319.15   | 3,1333                  | 65,25                      | 85,86                                     | -1,0662  |
| 7                     | 48.8      | 321.95   | 3,1051                  | 83.06                      | 109,29                                    | -0,9614  |
| 7                     | 52.1      | 325.25   | 3.0746                  | 115.22                     | 151.6                                     | - 0.8193 |
|                       | 53.8      | 326.95   | 3.0586                  | 131.48                     | 173.0                                     | -0.76195 |
| Ż                     | 55.3      | 328,45   | 3.0446                  | 118.10                     | 155,39                                    | -0,8085  |
| 7                     | 56.6      | 329.75   | 3.0326                  | 148,4                      | 195,26                                    | -0.70938 |
| 7                     | 59.0      | 322.15   | 3.0107                  | 167.52                     | 220.4                                     | -0,65674 |
| 7                     | 62,3      | 335,45   | 2,9811                  | 199,54                     | 262,56                                    | -0,58076 |

### TABLEAU 5

| LiOC <sub>2</sub> H <sub>3</sub> , | 1,92C2H3OH | (manom | ètre No. | 3) |
|------------------------------------|------------|--------|----------|----|
|------------------------------------|------------|--------|----------|----|

| Variation<br>de temp. | ג<br>(°C) | T<br>(K) | 1/T(K)-10 <sup>3</sup> | pe<br>(mr1Hg <sub>a</sub> ) | Pe<br>(atm· 10 <sup>3</sup> ) | log <sub>10</sub> p <sub>e</sub> |
|-----------------------|-----------|----------|------------------------|-----------------------------|-------------------------------|----------------------------------|
| 7                     | 36,4      | 309,55   | 3,2305                 | 29,62                       | 38,98                         | -1,40916                         |
| 7                     | 42,8      | 315,95   | 3,1651                 | 47,80                       | 62,90                         | -1,20135                         |
| 7                     | 48,0      | 321,15   | 3,1138                 | 71,60                       | 94,21                         | -1,02588                         |
| 7                     | 52,25     | 325,4    | 3,0731                 | 114,95                      | 151,25                        | -0,8203                          |
| 7                     | 58,2      | 331,35   | 3,0180                 | 159,62                      | 210,00                        | -0,6777                          |
| 7                     | 61,1      | 334,25   | 2,9918                 | 184,64                      | 242,95                        | -0,61448                         |
| 7 #                   | 65,65     | 338,8    | 2,9516                 | 213,11                      | 304,09                        | -0,51699                         |
| 7                     | 69,4      | 342,55   | 2,9193                 | 277,89                      | 365,65                        | -0,43694                         |
| 7                     | 72,8      | 345,95   | 2,8906                 | 328,32                      | 432,0                         | -0,36451                         |

| TABLEAU                            | 6          |
|------------------------------------|------------|
| NaOC <sub>2</sub> H <sub>5</sub> , | 1,04C₂H₅OH |

| Variation<br>de temp. | t<br>(°C) | T<br>(K) | <i>1 T(K)-10</i> <sup>3</sup> | p <sub>€</sub><br>(mmHg <sub>∎</sub> ) | p.<br>(atm· 10 <sup>3</sup> ) | log <sub>10</sub> p <sub>e</sub> |
|-----------------------|-----------|----------|-------------------------------|----------------------------------------|-------------------------------|----------------------------------|
| 7                     | 21,15     | 294,3    | 3,3979                        | 3,05                                   | 4,013                         | -2,3965                          |
| 7                     | 22,7      | 295,85   | 3,3800                        | 3,18                                   | 4,184                         | -2,3784                          |
| 7                     | 24,8      | 297,95   | 3,3562                        | 3,56                                   | 4,69                          | -2,3289                          |
|                       | 28,7      | 301,85   | 3,3129                        | 4,92                                   | 6,466                         | -2,1894                          |
| 7                     | 28,8      | 301,95   | 3,3118                        | 4,72                                   | 6,20                          | -2,2073                          |
| ~                     | 29,9      | 303,05   | 3,2998                        | 5,29                                   | 6,96                          | -2,1574                          |
| 7                     | 32,0      | 305,15   | 3,2770                        | 6,82                                   | 8,972                         | - 2,0471                         |
| 7                     | 32,6      | 305,75   | 3,2706                        | 6,82                                   | 8,974                         | -2,0470                          |
|                       | 35,25     | 308,40   | 3,2425                        | 9,05                                   | 11,91                         | -1,9242                          |
| <b></b> 矛             | 38,9      | 312,05   | 3,2046                        | 10,47                                  | 13,78                         | -1,8609                          |
| 7                     | 41,9      | 315,05   | 3,1741                        | 13,41                                  | 17,64                         | -1,7534                          |
| 7                     | 44,6      | 317,75   | 3,1471                        | 15,97                                  | 21,01                         | -1,6775                          |
| 7                     | 46,2      | 319,35   | 3,1314                        | 18,22                                  | 23,97                         | -1,6203                          |
| 7                     | 48,2      | 321,35   | 3,1119                        | 20,72                                  | 27,26                         | -1,5644                          |
| <b>\</b>              | 50,0      | 323,15   | 3,0945                        | 24,59                                  | 32,36                         | -1,4901                          |
| 7                     | 52,8      | 325,95   | 3,0680                        | 28,91                                  | 38,04                         | -1,4198                          |
| ア                     | 55,25     | 328,40   | 3,0451                        | 34,38                                  | 45,24                         | -1,3445                          |
| 7                     | 58,2      | 331,35   | 3,0180                        | 41,71                                  | 14,88                         | -1,2606                          |
| 7                     | 61,4      | 334,55   | 2,9891                        | 50,97                                  | 67,07                         | -1,1735                          |
|                       | 64,4      | 337,55   | 2,9625                        | 62,13                                  | 81,75                         | -1,0875                          |
| え                     | 64,5      | 337,65   | 2,9617                        | 62,08                                  | 83,0                          | -1,0809                          |
| <b>ブ</b>              | 69,55     | 342,70   | 2,9180                        | 84,67                                  | 111,4                         | -0,9531                          |
| <b>`</b>              | 73,25     | 346,4    | 2,8868                        | 106,91                                 | 140,7                         | -0,8518                          |
| ~                     | 75,8      | 348,95   | 2,8657                        | 123,97                                 | 163,11                        | -0,7875                          |
| 7                     | 77,4      | 350,55   | 2,8527                        | 134,04                                 | 176,36                        | -0,7536                          |
| 7                     | 80,35     | 353,5    | 2,8289                        | 159,35                                 | 209,68                        | -0,67844                         |
| 7                     | 82,2      | 355,35   | 2,8141                        | 177,42                                 | 233,4                         | -0,6318                          |
| 7                     | 85,2      | 358,35   | 2,7906                        | 203,47                                 | 267,7                         | -0,5723                          |

~

TABLEAU 7

| Variation<br>de temp. | t<br>(°C) | T<br>(K) | 1/T(K)-103 | Pe<br>(mmHg <sub>a</sub> ) | Pc<br>(atm- 10 <sup>3</sup> ) | log10 Pe |
|-----------------------|-----------|----------|------------|----------------------------|-------------------------------|----------|
| 7                     | 28,3      | 301,95   | 3,3118     | 3,82                       | 5,026                         | -2,2987  |
| 7                     | 32,0      | 305,15   | 3,2770     | 5,66                       | 7,455                         | -2,1275  |
| 7                     | 35,9      | 309,05   | 3,2357     | 7,78                       | 10,235                        |          |
| 7                     | 39,3      | 312,45   | 3,2000     | 10,35                      | 13,61                         | -1,8660  |
| 7                     | 42,4      | 315,55   | 3,1691     | 13,05                      | 17,17                         | -1,7653  |
| 7                     | 46,0      | 319,15   | 3,1333     | 17,98                      | 23,66                         | -1,626   |
| 7                     | 48.8      | 321,95   | 3,1061     | 22,54                      | 29,65                         | -1,5279  |
| 7                     | 52,1      | 325,25   | 3,0746     | 29,00                      | 38,17                         | -1,4183  |
| 7                     | 55,3      | 328,45   | 3,0446     | 35,69                      | 46,96                         | - 1,3283 |
| 7                     | 62,3      | 335,45   | 2,9811     | 57.95                      | 76,25                         | -1,1178  |
| 7                     | 64,5      | 337,65   | 2,9617     | 66,68                      | 87,74                         | -1,0568  |
| 7                     | 68.6      | 341.75   | 2.9261     | 87.71                      | 115.41                        | -0,9378  |
| 7                     | 75.8      | 348,95   | 2.8657     | 135.90                     | 178.8                         | -0.7476  |
| 7                     | 80.35     | 353.5    | 2,8289     | 177.24                     | 233.2                         | -0.6322  |
| 7                     | 83,90     | 357,05   | 2,8007     | 220,05                     | 289,5                         | -0,5383  |

Les Tableaux 2-7 et les Figs. 1 et 2 présentent les résultats obtenus sur les éthylates de lithium et de sodium disolvatés, qui donnent lieu à la réaction équilibrée suivante :

$$MOC_{2}H_{5}, 2C_{2}H_{5}OH(c) \xrightarrow{(a)} MOC_{2}H_{5}(c) + 2C_{2}H_{5}OH/(g)$$
(3)  
$$M = Li, Na$$

L'équilibre pour ces deux solvates a été atteint aussi bien dans le sens (a) que dans le sens (b).

Pour l'éthylate de lithium disolvaté, nous observons entre 323 et 333 K le passage d'un solide cristallisé à une solution saturée en éthylate anhydre. Ceci se traduit dans les graphes  $\log_{10} p_e(\text{atm}) = f(1/T(K))$ , par un changement de pente très net.

Une étude complète du diagramme binaire  $LiOC_2H_5-C_2H_5OH$  déjà partiellement établi<sup>7</sup> est en cours et nous permettra d'exploiter les résultats obtenus.

Ce phénomène n'est pas particulier au disolvate de l'éthylate de lithium, car nous l'avons aussi rencontré dans le cas du mono- et du disolvate de l'éthylate de



Fig. 1. Étude de l'équilibre de dissociation de  $LiOC_2H_5$ ,  $2C_2H_5OH$ . Composition du mélange initial  $LiOC_2H_5$ ,  $1,92C_2H_5OH$  (courbes (1) et (1)) +  $\triangle$  O. + manomètre No. 1;  $\triangle$  manomètre No. 2; O manomètre No. 3. Composition du mélange initial  $LiOC_2H_5$ ,  $1,30C_2H_5OH$  (courbes (2) et (2))  $\triangle$ .



Fig. 2. Étude de l'équilibre de dissociation de NaOC<sub>2</sub>H<sub>5</sub>, 2C<sub>2</sub>H<sub>5</sub>OH. Composition du mélange initial NaOC<sub>2</sub>H<sub>5</sub>, 1,04C<sub>2</sub>H<sub>5</sub>OH courbe (1)  $\bigcirc$ . Composition du mélange initial NaOC<sub>2</sub>H<sub>5</sub>, 1,625C<sub>2</sub>H<sub>5</sub>OH courbe (2)  $\triangle$ .

potassium, ainsi que nous le verrons par la suite. Pour l'équilibre envisagé (réaction (3)), nous avons :

$$\log_{10} p_e \operatorname{atm} = \frac{-\overline{\Delta H}_{T_1 \to T_2}^\circ}{2 \times 4,576 T} + \frac{\overline{\Delta S}_{T_1 \to T_2}^\circ}{2 \times 4,576}$$

 $\overline{\Delta H}_{T_1 \to T_2}^{\circ}$  représente la variation d'enthalpie moyenne dans le domaine de température allant de  $T_1$  à  $T_2$ . Comme  $T_1 \simeq 298$  K et  $T_2 - T_1 = 60$  K, nous considérerons en première approximation que  $\overline{\Delta H}_{T_1 \to T_2}^{\circ} = \overline{\Delta H}_{298}^{\circ}$ . Pour la même raison, nous aurons  $\overline{\Delta S}_{T_1 \to T_2}^{\circ} = \overline{\Delta S}_{298}^{\circ}$ 

**TABLEAU 8** 

|   | Composé                                                                 | log <sub>10</sub> p (atm) | = a/T(K) + b | $\Delta H^{\circ}$ (reaction, 298 K) |  |
|---|-------------------------------------------------------------------------|---------------------------|--------------|--------------------------------------|--|
|   |                                                                         | a                         |              |                                      |  |
| 1 | LiOC <sub>2</sub> H <sub>5</sub> , 1,92C <sub>2</sub> H <sub>5</sub> OH | $-3250\pm 50$             | 9,11±0,05    | $+29800\pm500$                       |  |
| 2 | LiOC <sub>2</sub> H <sub>5</sub> , 1,30C <sub>2</sub> H <sub>5</sub> OH | $-3480 \pm 50$            | 9,82±0,03    | $+31900 \pm 500$                     |  |
| 3 | $N_2OC_2H_5$ , 1,625 $C_2H_5OH$                                         | $-3380\pm20$              | 8,96±0,04    | $\pm 30900 \pm 300$                  |  |
| 4 | $NaOC_2H_5$ , 1,04 $C_2H_5OH$                                           | $-3090 \pm 20$            | 8,07±0,03    | $+28300\pm200$                       |  |

Le Tableau 8 résume l'ensemble des données expérimentales traitées par la méthode des moindres carrés.

Les solvates 2 et 3 présentent des enthalpies de réaction notablement plus élevées que celles obtenues respectivement avec les composés 1 et 4. Nous pensons que cette différence est liée à l'exothermicité de la réaction entre l'éthanol en vapeur saturante et l'éthylate désolvaté qui provoque un début de décomposition thermique<sup>6</sup>. Les deux autres solvates<sup>1,4</sup> étant préparés par évaporation de la solution concentrée en éthylate, il n'y a aucun risque de décomposition partielle, d'où notre choix :

 $\Delta H^{\circ}$  (réaction, 298 K, LiOC<sub>2</sub>H<sub>5</sub>, 2C<sub>2</sub>H<sub>5</sub>OH(c)) =  $\div$  29800 $\pm$ 500 cal mol<sup>-1</sup>

 $\Delta H^{\circ}$  (réaction, 298 K, NaOC<sub>2</sub>H<sub>5</sub>, 2C<sub>2</sub>H<sub>5</sub>OH(c)) = +28300 \pm 200 cal mol<sup>-1</sup>

(2) Cas des éthylates  $MOC_2H_5$ ,  $C_2H_5OH$  avec M = K, Rb, Cs

(a) Étude préliminaire. Nous avons examine dans les mêmes conditions le comportement thermique de :  $KOC_2H_5$ ,  $C_2H_5OH(c)$ ;  $RbOC_2H_5$ ,  $C_2H_5OH(c)$ ;  $CsOC_2H_5$ ,  $C_2H_5OH(c)$ .

Nous pensions pouvoir étudier la réaction équilibrée suivante

 $MOC_2H_5$ ,  $C_2H_5OH(c) \Rightarrow MOC_2H_5(c) + C_2H_5OH/g$ 

avec M = K, Rb, Cs.

En fait, nous n'avons pu mesurer après scellement du dispositif manométrique qu'une pression très faible pour les éthylates de rubidium et de césium (à 298 K,  $p_{eq} \simeq 0.1$  torr pour RbOC<sub>2</sub>H<sub>5</sub>, C<sub>2</sub>H<sub>5</sub>OH, et  $p_{eq} \simeq 10^{-2}$  torr pour CsOC<sub>2</sub>H<sub>5</sub>, C<sub>2</sub>H<sub>5</sub>OH). Par la suite, nous avons observé une augmentation continue de la pression totale dans le dispositif manométrique (15 torr en un mois pour l'éthylate de rubidium monosolvaté). Ce fait traduit la décomposition irréversible des éthylates solvatés étudiés : au refroidissement, la pression ne reprend en aucun cas sa valeur initiale.

Cette constatation est confirmée par l'étude du comportement thermique des éthylates alcalins sous pression réduite<sup>6</sup>, étude dans laquelle nous avons pu montrer que la décomposition thermique de l'éthylate en éthylène, hydrogène et en des produits solides mal définis, est déjà commencée alors que la désolvatation de l'éthylate n'est pas encore terminée.

Dans le cas du monosolvate de l'éthylate de potassium, nous avons observé à 298 K une pression de 0,5 torr environ qui n'évoluait pas dans le temps; aussi avons nous entrepris l'étude systématique de la réaction de dissociation de l'éthylate de potassium monosolvaté que nous pouvions supposer équilibrée.

(b) Étude de la dissociation thermique de l'éthylate de potassium monosolvaté (Tableau 9–11 et Fig. 3). Nous avons utilisé trois échantillons :

# $\alpha - KOC_2H_5, 0, 74C_2H_5OH$

Nous n'avons pu observer d'équilibre pour cette composition : comme pour les éthylates de rubidium et de césium monosolvatés, la décomposition de l'éthylate de potassium en hydrogène et éthylène est déjà commencée.

| Variation<br>de temp. | נ<br>(°C) | T<br>(K) | 1/T(K)·103 | ₽₅<br>(mmHg <sub>s</sub> ) | р <sub>е</sub><br>(atm·10 <sup>3</sup> ) | iog <sub>10</sub> P <sub>e</sub> |
|-----------------------|-----------|----------|------------|----------------------------|------------------------------------------|----------------------------------|
| 7                     | 25,2      | 298,35   | 3,3518     | 0,56                       | 0,733                                    | -3,135                           |
| $\langle $            | 29,95     | 303,10   | 3,2992     | 0,83                       | 1,086                                    | -2,964                           |
| え                     | 34,7      | 307,85   | 3,2483     | 1,62                       | 2,130                                    | -2,671                           |
| 7                     | 41,0      | 314,15   | 3,1832     | 1,66                       | 2,181                                    | -2,661                           |
| 7                     | 45,0      | 318,15   | 3,1432     | 2,42                       | 3,184                                    | -2,497                           |
| 7                     | 50,2      | 323,35   | 3,0926     | 3,38                       | 4,440                                    | -2,352                           |
|                       | 50,4      | 323,55   | 3,0907     | 3,09                       | 4,070                                    | -2,3903                          |
| え                     | 55.05     | 328.20   | 3.0469     | 3.99                       | 5.250                                    | -2,2799                          |
| 7                     | 60,3      | 333,45   | 2,9990     | 4,98                       | 6,456                                    | -2,1840                          |
| 7                     | 60,7      | 333.85   | 2,9954     | 4.97                       | 6,534                                    | -2,1848                          |
| 7                     | 63,8      | 336,95   | 2,9678     | 6,17                       | 8,116                                    | -2,0906                          |
| 7                     | 69,0      | 342.2    | 2,9222     | 8.12                       | 10,68                                    | -1,9714                          |
| 7                     | 70.1      | 343.25   | 2,9133     | 8.25                       | 10,86                                    | -1.9641                          |
| 7                     | 74,7      | 347,85   | 2,8748     | 9,94                       | 13,07                                    | -1,9836                          |
| 7                     | 78.8      | 351.95   | 2,8413     | 11,17                      | 14,70                                    | -1,8328                          |
| 7                     | 80.1      | 353.25   | 2.8309     | 11.55                      | 15.20                                    | -1.8182                          |
| 7                     | 82,8      | 355,95   | 2,894      | 12,80                      | 16,85                                    | -1,7734                          |
| 7                     | 85,5      | 358,65   | 2,7882     | 13,19                      | 17,36                                    | -1,7604                          |
| 7                     | 87.7      | 360,85   | 2,7712     | 14.31                      | 18,83                                    | -1,7252                          |

 $C_2H_5OK$ ,  $C_2H_5OH$  (1<sup>re</sup> série de mesures)

### TABLEAU 10

| C <sub>2</sub> H <sub>5</sub> OK, | C <sub>2</sub> H <sub>5</sub> OH | (2* | série | de | mesures) |
|-----------------------------------|----------------------------------|-----|-------|----|----------|

| Variation<br>de temp. | パ<br>(°C) | T<br>(K) | 1/T(K)·10 <sup>3</sup> | P₅<br>(mmHg₂) | Pe<br>(atm• 10 <sup>3</sup> ) | log <sub>10</sub> Pe |
|-----------------------|-----------|----------|------------------------|---------------|-------------------------------|----------------------|
| 7                     | 25.4      | 298.55   | 3,3495                 | 0.77          | 1,009                         | - 2,996              |
| 7                     | 28,1      | 301,25   | 3,3195                 | 1,03          | 1,348                         | -2,870               |
| 7                     | 31,5      | 304,65   | 3,2825                 | 1,39          | 1,831                         | -2,737               |
| 7                     | 36,4      | 309,55   | 3,2305                 | 1,87          | 2,458                         | -2,609               |
| 7                     | 42,8      | 315,95   | 3,1651                 | 2,95          | 3,877                         | -2,4115              |
| 7                     | 48,0      | 321,15   | 3,1138                 | 3,61          | 4,748                         | -2,3235              |
| 7                     | 52,25     | 325,4    | 3,0731                 | 4,48          | 5,891                         | -2,2298              |
| 7                     | 58,2      | 331,35   | 3,0180                 | 5,95          | 7,825                         | -2,1065              |
| 7                     | 61.1      | 334,25   | 2,9918                 | 7,20          | 9,474                         | -2,0235              |
| 7                     | 65,65     | 338,8    | 2,9516                 | 8,27          | 10,88                         | -1,9633              |
| 7                     | 69,4      | 342,55   | 2,9193                 | 9,30          | 12,24                         | -1,9122              |
| 7                     | 72,8      | 345,95   | 2,8906                 | 10,40         | 13,69                         | -1,8637              |
| 7                     | 75,8      | 348,95   | 2,8657                 | 11,39         | 14,99                         | -1,8242              |
| 7                     | 80,35     | 353.5    | 2,8289                 | 12,57         | 16,53                         | -1,7816              |
| 7                     | 83,90     | 357.05   | 2,8007                 | 14,08         | 18,53                         | -1,7321              |
| 7                     | 88.8      | 361.95   | 2.7628                 | 16.09         | 21.17                         | -1.6743              |

# 324

**TABLEAU 11** 

| Variation | t     | Т      | $1/T(K) \cdot 10^{3}$ | D.                   | D.                       | login Po |
|-----------|-------|--------|-----------------------|----------------------|--------------------------|----------|
| de temp.  | (°C)  | (K)    |                       | (mmHg <sub>a</sub> ) | (atm · 10 <sup>3</sup> ) |          |
| 7         | 36,4  | 309,55 | 3,2305                | 3,08                 | 4,052                    | -2,392   |
| 7         | 42.8  | 315,95 | 3,1651                | 4,64                 | 6,110                    | -2,214   |
| 7         | 48,0  | 321,15 | 3,1138                | 5,88                 | 7,735                    | -2,1115  |
| 7         | 52,25 | 325,4  | 3,0731                | 7,00                 | 9,215                    | 2,0355   |
| 7         | 58,2  | 331,35 | 3,0180                | 9,51                 | 12,51                    | -1,9026  |
| 7         | 61,1  | 334,25 | 2,9918                | 10,34                | 13,60                    | -1,8665  |
| 7         | 65,65 | 338,8  | 2,9516                | 11,68                | 15,37                    | -1,8134  |
| 7         | 69,4  | 342,55 | 2,9193                | 13,62                | 17,92                    | -1,7467  |
| 7         | 72,8  | 345,95 | 2,8906                | 14,83                | 19,52                    | -1,7096  |
| 7         | 75,8  | 348,95 | 2,8657                | 16,52                | 21,74                    | -1,6628  |
| 7         | 80,35 | 353,5  | 2,8289                | 17,49                | 23,02                    | -1,6379  |
| 7         | 83,90 | 357,05 | 2,8007                | 19,67                | 25,88                    | -1,5871  |
| 7         | 88,8  | 361,95 | 2,7628                | 20,11                | 26,45                    | -1,5775  |



Fig. 3. Étude de la dissociation thermique de l'éthylate de potassium mono- et disolvate. Courbe  $(1) = C_2H_5OK$ ,  $2C_2H_5OH$ ; Courbe  $(2) = C_2H_5OK$ ,  $1C_2H_5OH$ .

# $\beta$ -KOC<sub>2</sub>H<sub>5</sub>, C<sub>2</sub>H<sub>5</sub>OH

Les résultats obtenus pour ce composé monophasé montrent après deux séries successives de manipulations que ce produit subit une très légère décomposition qui modifie sensiblement la courbe d'équilibre à basse pression : certains gaz produits n'interviennent pas dans la réaction équilibrée :

$$KOC_2H_5, C_2H_5OH(c) \rightleftharpoons KOC_2H_5(c) + C_2H_5OH \nearrow (g)$$
(5)

Le taux de décomposition est extrêmement faible; le calcul mené à partir de la masse de produit réactionnel et de la pression initiale à 298 K, nous donne une valeur de l'ordre de  $10^{-5}$ . La mise en évidence de cette réaction de décomposition superposée à l'équilibre envisagé est due à l'extrême sensibilité de la méthode tensimétrique. De ce fait, nous ne pouvons exploiter les courbes  $\log_{10} p_e = f(1/T)$ .

# $\gamma$ -KOC<sub>2</sub>H<sub>5</sub>, I,14C<sub>2</sub>H<sub>5</sub>OH

Nous avons préparé ce mélange de mono- et disolvate de l'éthylate de potassium afin de pouvoir différencier la réaction (5) de la réaction :

$$C_2H_5OK$$
,  $2C_2H_5OH(c) \rightleftharpoons C_2H_5OK$ ,  $C_2H_5OH(c) + C_2H_5OH/(g)$  (6)

Les résultats de cette étude qui sont reportés dans le Tableau 11 et sur la Fig. 3 montrent sans ambiguité que nos conclusions faites dans le paragraphe (2b) sont parfaitement justifiées puisque nous observons une courbe différente de celles obtenues pour les deux séries de mesures effectuées sur l'éthylate monosolvaté. Nous avons observé pour ces trois compositions, le phénomène déjà cité à propos de l'éthylate de lithium disolvaté, c'est-à-dire le passage à la solution saturée d'éthylate anhydre dans l'alcool (rupture de pente dans le graphe  $\log_{10} p_e = f(1/T)$ ).

Les valeurs numériques de  $p_e$  et de T traitées par la méthode des moindres carrés conduisent pour la réaction (6) à :

$$\log_{10} p_e/p_0 = \frac{a}{T} + b$$

avec :

 $a = (-2250 \pm 120) \text{ K}$  $b = 4,89 \pm 0,02$ 

Soit une variation d'enthalpie égale à :

 $(+10300\pm600)$  cal mol<sup>-1</sup> à 298 K.

### (IV) CALORIMÉTRIE

Devant l'impossibilité de déduire de façon satisfaisante les enthalpies standards de formation de certains éthylates solvatés des mesures de pressions d'équilibre, nous avons procédé à ces déterminations à partir des enthalpies de dissolution de ces solvates purs dans l'acide sulfurique 0,104 N. La réaction calorimétrique principale

### peut s'écrire :

$$MOC_{2}H_{5}, xC_{2}H_{5}OH(c) + \frac{1}{2}H_{2}SO_{4}(aq) \rightarrow \frac{1}{2}M_{2}SO_{4}(aq) + (x+1)C_{2}H_{5}OH(aq)$$
(7)
$$x = 1 \text{ ou } 2$$

### (1) Appareillage calorimétrique

Le calorimètre isopéribolique utilisé, de performances voisines de celles du LKB 8700 a été construit au laboratoire. Sa température moyenne est de (298,15 $\pm$ 0,01) K.

Le volume de la cellule de réaction utilisée est d'environ 100 cm<sup>3</sup>. Pour chaque expérience, un calibrage électrique est effectué avant et après la mesure de la chaleur de réaction. L'enregistrement de la tension de déséquilibre d'un pont de Wheatstone (AOIP B9R) contenant la thermistance (Fenwall GB 35 P2) de la cellule dans une de ses branches donne la variation de la température, après les corrections habituelles.

### (2) Principe du calcul

La réaction calorimétrique principale (7) montre qu'il est nécessaire de connaître les enthalpies de formation du sulfate du métal alcalin considéré et de l'alcool éthylique en solution dans le milieu réactionnel. Les calculs sont donc effectués d'après le schéma réactionnel donné au bas de cette page.

La réaction globale (E) est obtenue en faisant la somme des réactions (A), (B), (C), (D). Les valeurs de  $\Delta H_1$  et  $\Delta H_2$  ont été déterminées précédemment<sup>1,2</sup>. L'enthalpie de dilution  $(-\Delta H_3)$  de l'acide sulfurique est calculée à partir de la chaleur différentielle de mélange *h*, la cellule contenant initialement « *a* » moles d'acide sulfurique  $H_2SO_4 y_1 H_2O$ .

(A) 
$$MOC_2H_5$$
,  $xC_2H_5OH(c) + n(H_2SO_4, y_1H_2O) \rightarrow \frac{1}{2}M_2SO_4$ ,  $(x+1)C_2H_5OH$ ,  $(n-\frac{1}{2})H_2SO_4$ ,  $ny_1H_2O$   $\Delta H_r$ 

(B) 
$$\frac{1}{2}M_2SO_4$$
,  $(x+1)C_2H_5OH$ ,  $(n-\frac{1}{2})H_2SO_4$ ,  $ny_1H_2O \rightarrow \frac{1}{2}M_2SO_4(c) + (x+1)C_2H_5OH$ ,  $(n-\frac{1}{2})H_2SO_4$ ,  $ny_1H_2O \qquad \Delta H_1$ 

(C) 
$$(x+1)C_2H_5OH, (n-\frac{1}{2})H_2SO_4, ny_1H_2O \rightarrow$$
  
 $(x+1)C_2H_5OH(liq) + (n-\frac{1}{2})H_2SO_4, ny_1H_2O \qquad \Delta H_2$ 

(D) 
$$(n-\frac{1}{2})H_2SO_4, ny_1H_2O \rightarrow (n-\frac{1}{2})(H_2SO_4, y_1H_2O) + y_1/2H_2O(liq) \Delta H_3$$

(E) 
$$MOC_2H_5$$
,  $xC_2H_5OH(c) + \frac{1}{2}(H_2SO_4, y_1H_2O) \rightarrow \frac{1}{2}M_2SO_4(c) + (x+1)C_2H_5OH(liq) + y_1/2 H_2O(liq) \Delta H_T$   
 $\Delta H_f^\circ = \frac{1}{2}\Delta H_f^\circ M_2SO_4(c) + (x+1)\Delta H_f^\circ C_2H_5OH(liq)$ 

$$-\frac{1}{2}\Delta H_{\rm f}^{\circ}$$
 (H<sub>2</sub>SO<sub>4</sub>, y<sub>1</sub>H<sub>2</sub>O) $-\Delta H_{\rm T}$ 

avec:  $\Delta H_T = \Delta H_r + \Delta H_1 + \Delta H_2 + \Delta H_3$ 

Lors de la dissolution de dn mole d'éthylate, le nombre de moles d'acide varie de da, le nombre de moles d'eau restant constant, d'où :

$$ay_1 = (a+da)(y_1+dy)$$
 et  $dy = \frac{-y_1 da}{a+da}$ 

avec da = -dn/2.

.

L'effet de dilution est égal à :

$$(a+da)h\,\mathrm{d} y=-hy_1\,\mathrm{d} a=\frac{h}{2}\,y_1\,\mathrm{d} n$$

La chaleur différentielle de mélange étant pratiquement constante dans le domaine de concentration utilisé, pour une mole d'éthylate nous avons :

$$-\Delta H_3 = \frac{y_1}{2} \int_{a=0}^{n=1} h \, \mathrm{d}n = \frac{y_1}{2} h$$

La valeur de h est obtenue à partir des données de la littérature<sup>8</sup>.

### (3) Résultats

Les résultats expérimentaux sont reportés dans le Tableau 12.

| TABLEAU | 12 |
|---------|----|
|---------|----|

| Composé                                                              | Masse<br>(mg) | $-\Delta H_r$ (cal mol <sup>-1</sup> ) | — <del>ΔH</del> z<br>moyen |
|----------------------------------------------------------------------|---------------|----------------------------------------|----------------------------|
| LiOC <sub>2</sub> H <sub>5</sub> , 2C <sub>2</sub> H <sub>5</sub> OH | 102,1         | 22350                                  | 22500                      |
|                                                                      | 103,0         | 23070                                  |                            |
|                                                                      | 94,3          | 22580                                  |                            |
|                                                                      | 100,5         | 22510                                  |                            |
|                                                                      | 90,9          | 21990                                  |                            |
| NaOC <sub>2</sub> H <sub>5</sub> , 2C <sub>2</sub> H <sub>5</sub> OH | 63,4          | 24740                                  | 24820                      |
|                                                                      | 47,7          | 25145                                  |                            |
|                                                                      | 54,0          | 24650                                  |                            |
|                                                                      | 66,5          | 25020                                  |                            |
|                                                                      | 62,0          | 24550                                  |                            |
| KOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH   | 30,5          | 25330                                  | 25560                      |
|                                                                      | 127,9         | 25570                                  |                            |
|                                                                      | 95,3          | 25355                                  |                            |
|                                                                      | 85,9          | 25725                                  |                            |
|                                                                      | 98,4          | 25810                                  |                            |
| RbOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH  | 112,0         | 27355                                  | 27520                      |
|                                                                      | 90,4          | 27430                                  |                            |
|                                                                      | 140,5         | 27570                                  |                            |
|                                                                      | 147,5         | 27530                                  |                            |
|                                                                      | 123,4         | 27550                                  |                            |
|                                                                      | 127,8         | 27670                                  |                            |
| $C_{3}OC_{2}H_{5}, C_{2}H_{5}OH$                                     | 84,0          | 26610                                  |                            |
|                                                                      | 74,4          | 26760                                  |                            |
|                                                                      | 105,4         | 26850                                  | 26690                      |
|                                                                      | 78,2          | 26530                                  |                            |

| Compose<br>MOC1H3, xC1H3OH                                                                                                                                                                                                                                                                                                                                       | <u>ΔH<sup>0</sup>, M<sub>1</sub>SO<sub>4</sub>(c)<br/>2<br/>(cal)</u> | $(x+I) \Delta H_1^{\circ} C_2 H_5 OH (liq)$<br>- $\Delta H_3$<br>(cal) | <u>-ΔH<sup>o</sup>, H<sub>2</sub>SO4 (nq)</u><br>, 2<br>(cal) | – ∆H<br>(cal)                             | $-\Delta H_1$ (cal)                            | -                                                  | ΔH <sup>e</sup><br>(cal)                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|
| Lioc <sub>4</sub> H <sub>5</sub> , 2C <sub>4</sub> H <sub>5</sub> 0H<br>NuoC <sub>2</sub> H <sub>5</sub> , 2C <sub>4</sub> H <sub>5</sub> 0H<br>KoC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> 0H<br>RboC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> 0H<br>CsoC <sub>3</sub> H <sub>5</sub> , C <sub>3</sub> H <sub>5</sub> 0H |                                                                       | - 206700<br>- 206700<br>- 137800<br>- 137800<br>- 137800<br>- 137800   | + 106665<br>+ 106665<br>+ 106665<br>+ 106665<br>+ 106665      | 22500<br>24820<br>25560<br>27520<br>26690 | - 2085<br>+ 1190<br>+ 4195<br>+ 4250<br>+ 3390 | - 315<br>- 315<br>- 315<br>- 315<br>- 315<br>- 315 | - 251350<br>- 239790<br>- 173025<br>- 170380<br>- 171070 |

329

Dans le Tableau 13 figurent les valeurs permettant de calculer les enthalpies standards de formation  $\Delta H_f^{\circ}$  des éthylates solvatés.

### (4) Discussion des résultats

A partir de nos résultats calorimétriques et de ceux obtenus précédemment<sup>12</sup>, il est possible de déterminer les enthalpies de désolvatation des différents éthylates. En effet, soit la réaction :

$$MOC_2H_5$$
,  $xC_2H_5OH(c) \rightarrow MOC_2H_5(c) + xC_2H_5OH(g)$ 

Pour cette réaction :

$$\Delta H_{d} = \Delta H_{f}^{\circ}(\text{MOC}_{2}\text{H}_{5}(\text{c})) + x\Delta H_{f}^{\circ}(\text{C}_{2}\text{H}_{5}\text{OH}(\text{g}))$$
$$-\Delta H_{f}^{\circ}(\text{MOC}_{2}\text{H}_{5}, x\text{C}_{2}\text{H}_{5}\text{OH}(\text{c}))$$

Pour effectuer ce calcul, il est nécessaire de connaître les enthalpies de formation des éthylates secs. Nous ne pouvons utiliser les valeurs données dans la littérature<sup>1,2</sup>, car pour leur détermination, il n'a pas été tenu compte de l'effet de dilution de l'acide sulfurique. Nous avons donc utilisé les valeurs expérimentales des enthalpies de réaction données par les auteurs.

Pour un éthylate anhydre, la réaction avec l'acide sulfurique s'écrit :

$$MOC_2H_5(c) + \frac{1}{2}H_2SO_4(aq) \rightarrow \frac{1}{2}M_2SO_4(aq) + C_2H_5OH(aq)$$
 (8)  $\Delta H'_5$ 

En retranchant membre à membre cette équation de l'équation (7), nous obtenons :

 $MOC_2H_5$ ,  $xC_2H_5OH(c) - MOC_2H_5(c) \rightarrow xC_2H_5OH(aq)$ 

réaction dont la variation d'enthalpie est :

$$\Delta H_r - \Delta H'_r = x \Delta H_f^{\circ} C_2 H_5 OH(aq) - \Delta H_f^{\circ} MOC_2 H_5, x C_2 H_5 OH$$
$$+ \Delta H_f^{\circ} MOC_2 H_5(c)$$

d'cù :

$$\Delta H_{d} = \Delta H_{r} - \Delta H'_{r} - x (\Delta H_{r}^{\circ} C_{2} H_{s} OH(aq) - \Delta H_{r}^{\circ} C_{2} H_{s} OH(g))$$
  
=  $\Delta H_{r} - \Delta H'_{r} - x (-68900 + 56190)$   
=  $\Delta H_{r} - \Delta H'_{r} + 12710 x$ 

Les valeurs des différentes enthalpies de désolvatation sont reportées dans le Tableau 14.

### (v) CONCLUSION

L'utilisation conjointe de la tensimétrie et de la calorimétrie nous a permis de confirmer les valeurs des enthalpies de formation standard des disolvates des éthylates de lithium et de sodium avec un domaine d'incertitude extrêmement restreint.

| Métal | ∆ <i>H</i> <sub>r</sub> | $-\Delta H_r'$ | x | 12710 x | $\Delta H_{d}$ |
|-------|-------------------------|----------------|---|---------|----------------|
| Li    | -22500                  | 27150          | 2 | 25420   | 30070          |
| Na    | -24820                  | 28310          | 2 | 25420   | 28910          |
| ĸ     | -25560                  | 31620          | 1 | 12710   | 18770          |
| Rb    | -27520                  | 32200          | 1 | 12710   | 17390          |
| Cs    | 26690                   | 31910          | I | 12710   | 17930          |

ENTHALPIE DE DÉSOLVATATION D'ÉTHYLATES ALCALINS

La détermination des enthalpies de formation des monosolvates des éthylates de potassium, rubidium et césium nous a permis de compléter les données thermodynamiques relatives aux éthylates alcalins dont toutes les valeurs des enthalpies de formation standard déterminées sont données dans le Tableau 15.

### **TABLEAU 15**

| Composé<br>MOC2H5                | $\Delta H_t^\circ$ (kcal mol <sup>-1</sup> ) | Composé<br>MOC <sub>2</sub> H <sub>5</sub> , xC <sub>2</sub> H <sub>5</sub> OH | $\frac{\Delta H_t^o}{(kcal\ mol^{-1})}$ |
|----------------------------------|----------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|
| LiOC₂H₅                          | $-108,6\pm1,0$                               | $LiOC_2H_5$ , $2C_2H_5OH$                                                      | -251,4±0,5                              |
| NaOC <sub>2</sub> H <sub>5</sub> | $-98,2\pm1,4$                                | NaOC <sub>2</sub> H <sub>5</sub> , 2C <sub>2</sub> H <sub>5</sub> OH           | $-239,8\pm0,4$                          |
| KOC₂H₅                           | $-97,8\pm1.4$                                | $KOC_2H_5, C_2H_5OH$                                                           | $-173,0\pm1$                            |
| RbOC <sub>2</sub> H <sub>5</sub> | $-96,5\pm1,0$                                | RbOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH            | $-170,4 \pm 1$                          |
| CsOC <sub>2</sub> H <sub>5</sub> | $-96,6\pm1,0$                                | CsOC <sub>2</sub> H <sub>5</sub> , C <sub>2</sub> H <sub>5</sub> OH            | $-171,1\pm 1$                           |

Précisons que pour compléter cette étude, des travaux concernant les entropies de formation standard des éthylates alcalins sont en cours au laboratoire.

#### **BIBLIOGRAPHIE**

- 1 J. M. Blanchard, R. D. Joly, J. M. Letoffe, G. Perachon et J. Thourey, J. Chim. Phys., 71 (1974) 472; cf. aussi : Erratum, J. Chim. Phys., 72 (1975) 275.
- 2 J. Bousquet, J. M. Blanchard, R. D. Joly, J. M. Letoffe, G. Perachon et J. Thourey, Bull. Soc. Chim., 3-4 (1975) 478.
- 3 G. E. Revzin, Zh. Obsch. Kim., 39 (1969) 2136.
- 4 P. Claudy, Thèse, Lyon, 1968.
- 5 M. Breysse, B. Claudel, M. Guenin et L. Faure, Chem. Phys. Lett., 30 (1975) 149.
- 6 J. M. Blanchard, J. Bousquet, P. Claudy et J. M. Letoffe, J. Therm. Anal., sous presse.
- 7 N. Ya. Turova et A. V. Novoselova, Isr. Akad. Nauk. SSSR Ser. Khim., 4 (1970) 752.
- 8 D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow et S. M. Bailey, R. H. Schumm, Selected Values of Chemical Thermodynamic Properties, Technical note 270-3, 1968.