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Note

Semi-empirical description of sigmoidal
and other decomposition curves
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(Received 8 October 19753)

If it may be assumed in the case of a heterogeneous reaction that it will
correspond to an Arrhenius type of kinetic temperature dependence, then the fraction
of decomposition « as a function of time, 7, and temperature, 7, may at least be
partially described by the following differential equation

dx dx 1 E
Z(Z=) [1-2AxT-exp[—Aa= 1
dt dt);:i- L =] exp (R T) W
with Ax=[|x—4] (1a)
and A-}é:(—E—’) _E (ib)
T T/a=¢+ T

In eqn (1) the descriptive exponent #z is equal to the order of reaction only for
a>+. Equation (1) is especially useful in evaluating sigmoidal, thermogravimetric
records of the decomposition of solid samples, in which z, dx/d? and T can easily be
determined, and in which the decomposition rate at half-way level (dx/df),-;
approaches the maximum value (d«/d?),,,,.-

Provided that 7 and the activation energy, E,, are constant, the temperature-
dependent factor in eqn (1) can be cancelled, and evaluation of » is considerably
simplified.

Under non-isothermal conditions (d7/dr s 0), the temperature-dependent
factor, related to x =14, can be calculated from E, = E,(x), T = T(x) and the gas
constant R.

Without using a specific kinetic model, E, can be evaluated from different
thermogravimetric records read at a fixed level of completion (e.g., x =), assuming
that E, is at least independent of time and temperature®.

In an Arrhenius type of temperature dependence, E, and n should be indepen-
dent not only of time but also o temperature. They are usually independent of T in
the entire temperature region of interest. £, may also be considered to be practically
independent of x in certain regions of a. Using the evaluation method mentioned
above this can be checked.
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Sometimes it is advisible to consider two different values of E,, one in the
acceleratory period, and another in the decay period, of a decomposition curve?.
However, this is obviously not always sufficient or even necessaryv*.

It is well known that the reaction order can be constant in the decay period*=*.

In these special cases, eqn (1) should be modified to

dx dx 1 E
—={—) -[2-2o]"exp|[—A=2 2
dit (dl)z=§ [ 2] p(R T) @)

at least for a<1%. In general, n has to be considered as a function of x. This function
n = n(2) can suddenly change from one « region to another, if different E, values in
these regions are accepied. If, under isothermal conditions, the decompositicn curve
is a2 symmetrical sigmoid, n will be a single-valued function of Ax.

In describing sigmoidal decomposition curves according to eqn (1), 7 can, in
certain special cases, remain constant during the whole reaction for kinematic reasons.

EXAMPLES

(1) If a reaction zone of unchanged dimensions travels from one side of a
homogeneous sample to the other at constant speed under isothermal conditions,
then n=0.

(i1) In the case of a flat, diamond-shaped crystal, if the reaction starts in a
corner and continues from one structural layer to the next at constant speed under
isothermal conditions in the direction of the opposite corner, then n =%.

(1) In the case of a bipvramidal-shaped crystal, if the reaction starts in one
peak and continues with constant speed under isothermal conditions from one
structural Iayer to the next until it reaches the other peak. the reaction zone being
always parallel to the basic plane, then n = %.

Isothermal decomposition curves, corresponding to the special cases just
mentioned, are shown in Fig. 1. Plotting dx/dr against (1 —2Ax) from these curves
on a double logarithmic scale will result in straight lines.

Normaliy slightly curved lines with two different values for each Ax can be
expected from such double logarithmic nlots of experimental data. Under isothermal
conditions, n-values can be graphically determined directly from the slope of these
lines.

It is more accurate to determine 7z numerically from

(9% _in(8%) _LlAE| _ -1
"“[‘"(dr)ﬁe* '"(dz)a::* RAT] [In (1—2A%)] 3

*E.g., if there is only one reaction zone in a solid, originally homogeneous material with relatively
rapid transport of volztile reactants through the decomposed, outer phases, it can be assumed that
dax/dr will be proporticnal to the surface of the reaction zone, which might go through a maximum.
E, will then remain fairly constant during the whole reaction.

**E. g, n=3, if the rzaction zone is a congruent, contracting, 3-dimensional cnvelope. (For further
conditions, see the former footrote.)
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Fig. 1. Isothermal decompeosition curves.

for a £ 1. Provided E, is the same as for 2 = 1, eqn (3) is simplified to

n =[log ii—55) —log -c—k—!) ]-[log (1-2801"" @
dt Ja#3 dt Ja=3
under isothermal conditions. Simiiar explicit formulas for z can be derived from eqn (2).

A kinetic model may be chosen to fit experimental » values. This choice may be
purely empirical, or may be restricted by theory, e.g., for kinematic reasons.

n<1 can usually be expected, unless a diffusion process is the rate-determining
step in the reaction mechanism. In the latter case the reaction order is initially very
high (i.e., according to eqn (2): n> 1), with a continuous decrease, e.g., to first order
(n— 1) for mass diffusion at the end of the reaction.

The relationship
dax da —E,
— = lim | — "ex :
(dt a=% T (dt)¢=§ p(RT):I:i' (5)

is normally valid in the whole tcmpei'ature region of interest. The extrapolated value
lim (dx/dt),- ; should not be regarded strictly as a theoretical limit. It may well be

T—x
that there is no actual limit for dx/dr.

If eqn (5) is valid and E, practically independent of « in its region of interest,
it is sufficient to determine the ‘constants’ E,, lim (dz/dt),-,, and additionally some

T

n = n(a) values, according to egns (1) or (2), in order to describe an experimental set
of decomposition curves. However, an interpolated value (dz/df),=;, r=1, (7; being
a characteristic temperature inside the experimental region) can be determined with
more precision thau the extrapolated value lim (dx/d?),— ;.
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