Thermochimica Acta, 19 (1977) 301-304 \bullet **Elsevier Scientific Publishing Company. Amsterdam - Printed in Belgium**

THE THERMAL DECOMPOSITION OF ALUMINIUM SULFATE

T. J. TRUEX. R. H. HAMMERLE AND R. A. ARMSTRONG *Ford Motor Company. Dearborn. Mich- 48121 W-S-A-1 Wcrived 24* **August 1976)**

ABSTRACT

The mechanism of thermal decomposition of aluminum sulfate has been investigated in the 500-700 "C temperature range using a flow reactor system with the emitted gaseous sulfur oxides coIIected in a Goksoyr-Ross coil and a hydrogen peroxide impinger. Sulfur trioxide (SO₃) was found to be the **primary sulfur oxide released during thermal decomposition (1).**

$$
Al_2(SO_4)_3 \rightarrow Al_2O_3 + 3SO_3 \tag{1}
$$

Less than 3% of the released sulfur oxides were sulfur dioxide (SO₂), indicating that the SO_3 dissociation reaction (2) is slow relative to the residence time of the SO₃ in the reactor (\sim 1 sec).

$$
SO_3 \rightleftharpoons SO_2 + \frac{1}{2}O_2 \tag{2}
$$

The experimental technique should be readily adaptable to the study of the thermal decomposition of other metal sulfates.

INTRODUCIION

A number of recent reports have dealt with the thermal decomposition of aluminium sulfate. These reports have included studies of the kinetics of decomposition¹⁻⁵ and the composition of the evolved gases formed during thermal decomposition³⁻⁶. The latter studies involved attempts to identify the **gaseous thermal decomposition products by mass spectrum analyses and have resulted in ConsiderabIe controversy concerning the identity of the primary sulfur oxide involved in the decomposition reaction_ The problem in all of these** studies arises from the ease of cracking of $SO₃$ into the $SO₂⁺$ fragment in the **ionization chamber of the mass spectrometer and therefore the difficulty of ob**serving the SO₃ species or obtaining quantitative information on its concen**tration compared to other sulfur oxide species which may he present.**

Recent work in this laboratory on the sulfuric acid emissions from automotive catalysts has resulted in interest in the thermal decomposition of aluminum sulfate; this interest arises from the importance of sulfur oxide storage and release reactions involving the alumina washcoat of automotive cataIysts_ Sulfur trioxide formed over the catalyst can react with the alumina to

form aluminum sulfate at iow catalyst temperatures; at higher temperatures the aluminum sulfate decomposes to retease the sulfur oxides- Accordingly, the mechanism of aluminum sulfate'thermal decomposition has been investigated using a flow reactor system with the emitted gaseous sulfur oxides collected in a Goksøyr-Ross coil⁷ and a hydrogen peroxide impinger. The exper**imental method allows unambiguous determination of the concentrations of** SO₃ and SO₂ formed during the dissociation reaction.

EXPERIMENTAL

The experimental apparatus used in this study is shown schematically in Fig. 1 and is essentially the same as that used to study the SO₂ oxidation kin**etics over automotive cataIysts*_ Previous work has shown that this technique** does not lead to spurious formation of SO_3 in the experimental apparatus⁸. A **gas mixture is humidified and preheated in the first oven and then Dassed over a quartz boat containing ahuninum sulfate in the reactor oven. As the** gas leaves the reactor oven, it passes through a Goksøyr-Ross coil⁷ which is **maintained at 7&75°C. This temperature is below the dew point of sulfuric acid and above that for water. Sulfuric acid selectively condenses in the Gokseyr-Ross coil while the other gases pass through. Sulfur dioxide is collected from the gas stream by oxidation to sulfate in a hydrogen peroxide impinger** (3% H₂O₂) downstream of the Goksøyr-Ross coil. The amounts of SO₃ and SO₂ released during the decomposition experiments are determined by batch **sulfate analyses of the Goksqr-Ross and impinger samples. respectively. The sulfate determinations are done by barium perchIorate titration with Thorin in**dicator using photometric endpoint detection⁹.

Baker Analyzed Reagent aluminum sulfate (dried powder) was used for all decomposition experiments. The flow reactor gas mixture was either (1) 10% H₂O and 90% N₂ or (2) 5% O_2 , 10% H₂O, and 85% N₂ by volume. The presence of water in the flow reactor system is dictated by the necessity for the released SO_3 to form sulfuric acid as the gas cools upon leaving the flow

Fig. 1. Experimental apparatus. $1 = Gas$ inlet; $2 = water$ inlet; $3 =$ humidifier oven; $4 =$ quartz reaction tube; $5 =$ reactor oven; $6 =$ sample container; $7 =$ Goksoyr-Ross coil; $8 =$ H₂O₂ impinger; $9 = gas$ exhaust.

reactor; the Goksøyr-Ross coil will not trap SO₃ which is in the gas phase. **Decomposition studies under anhydrous conditions may be performed by injetting the water downstream of the reactor zone.**

The gas flow-rates for all experiments were $\sim 5.01 \text{ min}^{-1}$.

RESULTS AND DISCUSSION

The thermal decomposition of aluminum sulfate in the flow reactor in the temperature range 500-700°C resulted in the sulfur oxide gas compositions shown in Table 1. The results in Table 1 are presented as the molar concentration ratio between the SO_3 emitted and the sum of the SO_3 and SO_2

TABLE 1

THE RA'fIO OF THE MOLAR CONCENTRATIONS OF SO3 EMITTED OVER THE SUM OF THE SO3 AhP so, EMITTED (%) DURING THE THERMAL DECOMPOSITION OF ALUMINUM SULFATE

Temp. (°C)	With oxygen ^a	Without oxygen ^b	
500	99%	98%	
600	99 %	97%	
700	97%		

'Gas composition 5% O₂, 10% H₂, and 85% N₂. ^b Gas composition 10% H₂O and 90% N₂.

emitted during decomposition. In the 500-700 "C temperature range, virtually all of the emitted sulfur oxide is in the form of SO₃ and thus provides con**clusive evidence that this is the primary gaseous species involved in the thermal decomposition of aluminum sulfate and supports the following mechanism (1):**

$$
Al_2(SO_4)_3 \rightleftharpoons Al_2O_3 + 3SO_3 \tag{1}
$$

The very small amounts of SO₂ observed, especially the small amounts **observed in the absence of oxygen, indicate that the SC**, dissociation reaction **(2) is not taking place to a significant extent in the time scale of the experiment-**

$$
SO_3 \rightleftharpoons SO_2 + \frac{1}{2}O_2 \tag{2}
$$

The residence time of the SO_3 in the reactor is \sim 1 sec. These results indicate that the large amounts of $SO₂$ found in mass spectrometer studies³⁻⁶ are either **due to much longer SO3 residence times in the reactor systems or to cracking** of SO₃ in the ionization chamber of the mass spectrometer.

The experimental techniques described here are readily adaptable to the **study of a wiQe range of metal sulfate thermal decompositions. In addition to** avoiding the problem of SO_3/SO_2 measurements in mass spectrometer studies, the technique allows for decomposition studies under different gaseous atmospheres.

REFERENCES

- 1 N. A. Warner and T. R. Ingraham, Can. J. Chem. Eng., 40 (1962) 263.
- 2 D. W. Johnson, Jr. and P. K. Gallagher, J. Am. Ceram. Soc., 54 (1971) 461.
- 3 H. A. Papazian, P. J. Pizzolato and R. R. Orrell, Thermochim. Acta, 4 (1972) 97.
- 4 D. W. Johnson, Jr. and P. K. Gallagher, *Thermochim. Acta*, 6 (1973) 333.
- 5 H. Papazian, P. J. Pizzolato and R. R. Orrell, Thermochim. Acta, 6 (1973) 337.
- 6 L. W. Collins, E. K. Gibson and W. W. Wendlandt, Thermochim. Acta, 9 (1974) 15.
- 7 H. Goksøyr and K. Ross, J. Inst. Fuel., 35 (1962) 177; E. S. Lisle and J. D. Sensenbaugh, Combustion, 36 (1955) 12.
- 8 R. H. Hammerie and M. Mikkor, SAE Paper No. 750097, SAE National Meeting, Detroit, Mich., Feb. 1975.
- 9 J. W. Butler and D. N. Locke, J. Environ. Sci. Health-Environ. Sci. Eng., All (1976) 79.
- 10 D. R. Stull and H. Prophet, JANAF Thermodynamic Tables, 2nd ed., NSRDS-NBS37, Office of Standard Reference Data, National Bureau of Standards, Washington, D.C., June 1971.

304