Thermochimica Acta, 19 (1977) 129-1 @ Elsevier Scientific Publishing Company, Amsterdam - Printed in Belgium

Note

lnffuence of the pressure on the shape of DTA and DTG curves **of reversible reactions of thermal decomposition of solids**

J. M. CRIADO

Departamento de Quimica Inorganica de la Facultad de Ciencias de la Universidad de Sevilla, Serilla (Spain) and Departamento de Investigaciones Fisicas y Quimicas, Centro Coordinado del C.S.I.C., Secilla (Spain) *(eoMvai 6* **Juiy** 1976)

Bandi and Krapf have studied in a recent and interesting paper¹ the influence of the pressure of CO₂ on the shape of the DTA curve of dolomite. At pressures of less than 200 torr a one-step decomposition of the sample to CaO and MgO has been **reported'. Moreover, taking into account the abrupt sharpening observed in the DTA** peak of dolimite by increasing the pressure of $CO₂$ from 0 to 70 torr, it is concluded¹ **that the reaction mechanism at very low pressures is different than at higher ones.**

The aim of this note is to suggest another possible explanation of the above **behaviour without considering any change of the reaction mechanism. In order to** show this, we will try to estimate the influence of the $CO₂$ pressure on the shape of the **derivatographic curve of thermal decomposition of CaCOs** :

$$
CaCO3 \approx CaO + CO2
$$
 (1)

This reaction has been chosen because the values of its equilibrium pressure, $P_{\rm co}$, at different temperatures have been reported in the literature². Therefore, it can be easily deduced from data of previous reference² that between 500 and 1000°C it **is fitted very closely the equation:**

$$
P_{\rm co}(\text{torr}) = 1.4 \cdot 10^{10} \cdot e^{-39/RT} \tag{2}
$$

R being $1.98 \cdot 10^{-3}$ kcal K⁻¹ mol⁻¹ and T the absolute temperature.

On the other hand, the same mechanism has been reported³ for both reaction (1) and the thermal decomposition of dolomite under vacuum. Therefore, we can write:

$$
\frac{d\alpha}{dt} = A \cdot e^{-E/RT} (1 - \alpha)^{2/3}
$$
 (3)

 α being the reacted fraction.

However, if the thermal decomposition of the salt is not carried out nnder

vacuum but at a pressure P_{CO_2} of CO_2 , eqn (3) becomes, after taking into account the microreversibility principle:

$$
\frac{d\alpha}{dt} = A \cdot e^{-E/RT} \left[1 - \frac{P_{CO_2}}{P_{eq}} \right] \cdot (1 - \alpha)^{2/3}
$$
 (4)

Substituting eqn (2) into (4) and using for E and \vec{A} the values of 39 kcal mol⁻¹ and **2-108 min-' reqorted by Morates4, we obtainz**

$$
\frac{dx}{dt} = \left(2 \cdot 10^8 \cdot e^{-39/RT} - \frac{2 \cdot 10^8}{1.4 \cdot 10^{10}} P_{CO_2}\right) (1 - \alpha)^{2/3}
$$
(5)

If the reaction rate, dz/dt, were recorded at a heating rate $\beta = dT/dt$, the previous equation would be transformed, after rearranging, into:

$$
\frac{d\alpha}{(1-\alpha)^{2/3}} = \frac{2 \cdot 10^3}{\beta} \cdot e^{-39/RT} dT - \frac{1.4 \cdot 10^{-2}}{\beta} \cdot P_{\text{CO}_2} dT \tag{6}
$$

that would be integrated in order to obtain the value of α required for calculating the reaction rate by means of eqn (4).

Fig. 1. Diagrams of the reaction rate of thermal decomposition of CaCO₃ versus temperature, calculated at a heating rate of 10° C min⁻¹ and different pressures of CO₂: (A) 0 torr; (B) 20 torr; **Q I00 fan-***

Reaction (I) is not thermodynamically favoured until a temperature is reached at which the equilibrium pressure coincides with the pressure of CO₂ around the sample. Thus, integrating eqn (6) as described by Coats and Redfern⁵, by using as lower integration limit of temperature the value of T_0 previously calculated from

 -130

eqn (2), we obtain:

$$
3[1-(1-\alpha)^{1/3}] = \frac{2 \cdot 10^8 RT^2}{39} \cdot e^{-39/RT} - \frac{2 \cdot 10^8 RT_0^2}{39\beta} \cdot e^{-39/RT_0} - \frac{1.4 \cdot 10^{-2}}{\beta} \cdot P_{\text{CO}_2} \cdot (T - T_0)
$$
(7)

Therefore, the plots of dx/dt that would be expected when performing the experiment under a particular pressure of $CO₂$ and a heating rate β would be calculated from eqns (5) and (7). The curves determined for pressures of 0; 20 and 100 torr of CO_2 , respectively, and at the same heating rate of 10° C min⁻¹ are plotted in Fig. 1. From this figure we can see that when reversible reactions of thermal **decomposition of solids are concerned, an abrupt sharpening of DTA or DTG** diagrams because of the pressure would be expected without assuming any change **of the reaction mechanism.**

REFERENCES

- 1 W. R. Bandi and G. Krapf, Thermochim. Acta, 14 (1976) 221
- 2 R. C. Weast (Ed.), *Handbook of Chemistry and Physics*, 51st ed., The Chemical Rubber Co., **clmland, Ohio, 1971, p- F-64-**
- 3 D. A. Young. *Decomposition of Solids*, Pergamon Press, London, 1966.
- *4* **J- hforaks,** *PAD- IAcJir. SeviUe <Spain),* **1975**
- 5 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.