INFLUENCE OF TEMPERATURES AND STARTING MATERIALS USED TO PREPARE *a*-Fe₂O₃ ON ITS CATALYTIC ACTIVITY AT THE THERMAL DECOMPOSITION OF KCIO4

M. SHIMOKAWABE, R. FURUICHI AND T. ISHII

Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, 060 (Japan) (Received 20 December 1976)

ABSTRACT

In order to elucidate the influence of preparative history of x -Fe₂O₃ on its reactivity, the catalytic thermal decomposition of $KClO₄$ by α -Fe₂O₃ was studied by means of DTA and X-ray techniques. The catalysts were prepared by the calcination of three iron salts, Fe(OH)(CH₃COO)₂, FeSO₄ · 7H₂O and Fe₂(SO₄)₃ · xH₂O, at temperatures of 500-1200°C in air. The lower the preparation temperature of α - $Fe₂O₃$, the larger the specific surface area and reversely the smaller the crystalline size. KClO₄ without α -Fe₂O₃ was found to begin fusion and decomposition simultaneously at about 530°C. The addition of α -Fe₂O₃ resulted in promotion of the decomposition reaction of $KClO₄$; a lowering of 30-110°C in the initial decomposition temperature and a solid-phase decomposition before fusion of $KClO₄$. The influence of preparative history of α -Fe₂O₃ on the decomposition mainly depended on the preparation temperature rather than the starting material. The initial decomposition temperature of $KClO_A$ increased with an increase of the preparation temperature of α -Fe₂O₃. The effect of α -Fe₂O₃ was discussed on the basis of the charge transfer and the oxygen abstraction models.

INTRODUCTION

 α -Fe₂O₃ is widely used in industry, e.g., as a raw material for the synthesis of ferrite, a catalyst for oxidation reactions, a source of pigment, etc. The physicochemical properties of α -Fe₂O₃ have been found to vary remarkably with its method of preparation histories, such as the kind of starting iron salts, the preparation temperatures, the preparation atmospheres and the addition of foreign ions. Gallagher et al.¹ studied the reactivity of twelve α -Fe₂O₃, which were prepared by the decomposition of various iron salts, by using the reactions of LiFeO₂ formation and dissolution in HCI-solution. They observed that the lowest decomposition temperature of each iron salt leads to the highest reactivity of x -Fe₂O₃ which has a large specific surface area, a low density and a small particle size. Gallagher et al. concluded that the high defect concentration and the low crystallinity of the oxide cause the high

reactivity. Several investigators²⁻⁴ have also studied the reactivity of α -Fe₂O₂ prepared at different temperatures by using the synthesis reactions of $CdFe₂O₄²$ and $ZnFe₂O₂$, and the catalytic decompositions of $H₂O₂²$ and CH₃OH⁴. The results were interpreted on the basis of defect structure and lattice disorder of the oxide.

On the other hand, it has been reported^{$5-10$} that the metal oxides catalytically promote the thermal decomposition of $KClO₄$ to cause a lowering of the decomposition temperature. Recently, authors reported¹¹ that the transition metal oxides, such as α -Fe₂O₃, Cr₂O₃ and MnO₂, markedly accelerate the thermal decomposition of $KClO₄$; these oxides caused a lowering of 100-200°C in the initial decomposition temperature (T_i) and a solid-phase decomposition of KClO₄. The pronounced effect of these oxides was explained by the electron transfer mechanism⁶. ⁸ and the oxygen abstraction model⁷.

In this work, in order to investigate the influence of preparative history of α -Fe₂O₃ on its reactivity, the oxides were prepared by calcination of three iron salts at different temperatures and their reactivity for the catalytic thermal decomposition of KClO, was investigated by means of DTA and X-ray techniques.

EXPERIMENTAL

Materials

Three iron salts shown in Table 1 were used as the starting materials. x -Fe₂O₃(A) was prepared by calcination of Fe(OH)(CH₃COO)₂(Kanto) in a stream of air (100 ml min⁻¹) at temperatures of 500-1200 °C for 1 h. x-Fe₂O₃(S₁) and x-Fe₂O₃(S₂) were prepared by dehydration of $FeSO_4 \cdot 7H_2O$ and $Fe_2(SO_4)_3 \cdot xH_2O(Kanto)$, respectively, in air at 200°C for 30 min and subsequent calcination in a stream of air at temperatures of 700-1200°C for 1 h. These samples were abbreviated as follows. For example, the sample prepared by the calcination of FeSO₄ \cdot 7H₂O at 700[°]C was indicated in such a form as α -Fe₂O₃(S₁-700). In order to remove residual sulfate ions in α -Fe₂O₃(S₁) and α -Fe₂O₃(S₂), the samples were washed with hot water until no BaSO₄ precipitate was observed in the filtrate. After washing, the samples were

TABLE 1

IRON SALTS USED AS STARTING MATERIAL

dried in air at 110°C for 8 h_ Infrared spectra of washed samples did not show absorption peaks of SO_4^{2-} (v = 983,1105 cm⁻¹). All iron oxides prepared were confirmed to be α -Fe₂O₃ by X-ray diffraction patterns. KCIO₄ used in the experiments **was GR reagent from Kanto Chemical Co. All samples were ground to pass 200 mesh sieve. SampIes for DTA and TG experiments were obtained by mixing KClO,+ with** α -Fe₂O₃ (weight ratio = 1 : 1) in an agate mortal for 20 min.

DTA, TG and X-ray diffraction

Apparatus and *experimental* **conditions employed were the same** as **previously** described^{10, 11}. DTA and TG experiments were carried out at a heating rate of 5^oC **min-** ' **in air atmosphere;,**

The initial decomposition temperature (T_i)

The value of T_i for KClO₄- α -Fe₂O₃ mixtures was determined by measuring **the onset temperature of exothermic defkction of the DTA curve, and confirmed by** the existence of the decomposition product(KCI) in the X-ray diffraction pattern of **DTA sample heated to the onset temperature. The accuracy of** T_i **was** \pm **5°C.**

Specific *surface area*

The specific surface area of x -Fe₂O₃ was estimated by the BET method^{12, 13} from the amount of N₂ adsorbed at liquid nitrogen temperature. 16.2 A^2 was employed as the cross-sectional area of N₂.

Crystathne size

The crystalline size of α -Fe₂O₃ was estimated by the X-ray diffraction *method'*- is_ NaCl was used as the reference materiaI_*

RESULTS

Therma! decomposifion of KCIO,

Figures 1(A)-(C) show DTA and TG curves of KCIO₄, and X-ray diffraction patterns of partially decomposed $KClO₄$. In the DTA curve, ΔT is expressed in μV scale of chromel-alumel thermocouple. DTA curve(A) shows two endothermic peaks **at 310 and 570°C and an** *exothermic* **peak at 600°C These three peaks correspond with the solid-phase transition from the rhombic to the cubic form, the fusion of solid KCIO, and the exothermic decomposition in the liquid** *state, reqxctively,* **It is found from TG curve(B) that the decrease in weight corresponding to the decomposition** $(KClO₄ \rightarrow KC1 + O₂)$ begins at about 530°C. X-ray diffraction patterns(C) show **that the presence of the decomposition product (KCI) is identified in the DTA sample at the temperature (550°C) immediately after the beginning of fusion- From the facts** mentioned above, it is found that the fusion and the decomposition take place simultaneously in the case of KClO₄ alone. Therefore, the endothermic DTA peak at 570[°]C is regarded as the result of the overlap of fusion with decomposition. For the

Fig. 1. (A) DTA; and (B) TG curves of KClO4; and (C) X-ray diffraction patterns of samples at temperatures shown by arrows on DTA curve. \bigcirc , KClO₄; \bigcirc , KCl.

sake of convenience in this paper, however, two peaks at 570 and 600°C are termed the fusion peak and the decomposition peak, respectively. It has been reported $16 - 19$ that the thermal decomposition of $KClO_A$ proceeds through $KClO₃$ as an intermediate product to form KCl and oxygen.

$$
KClO_4 \rightarrow KClO_3 + 1/2O_2 \tag{1}
$$

 $KClO₃ \rightarrow KCl + 3/2O₂$

In the present experiments, however, the presence of KClO₃ was not identified from TG and X-ray diffraction patterns.

Effect of α -Fe₂O₃ additives on the thermal decomposition of KClO₄

Table 2 shows the effect of the mixing ratio on the DTA peak temperature of

 (2)

TABLE 2

EFFECT OF THE MIXING RATIO OF KCIO4 AND a-Fe2O3 ON THE PEAK TEMPERATURES OF THE TRANSITION, THE FUSION AND THE DECOMPOSITION OF KCIO4

Prepared by the calcination of Fe₂(SO₄)₃ - xH_zO in a stream of air at 800°C for 4.5 hr.

Fig. 2. (A) DTA; and (B) TG curves of KClO₄ with a -Fe₂O₂(S₁-700); and (C) X-ray diffraction patterns of sample at the temperature shown by the arrow on the DTA curve. O, KClO4; ..., KCl; \Box , a-Fe₂O₁

 $KCIO₄-x-Fe₂O₃(S₂-800)$ systems. The peak temperatures of fusion and decomposition decrease with an increase in the α -Fe₂O₃/KClO₄ ratio. On the other hand, the addition of α -Fe₂O₃ has little effect on the solid-phase transition of KClO₄. In cases when less than 0.4g of α -Fe₂O₃ was added, the molten KClO₄ flew down from the sample holder which was placed in vertical position. Consequently in all experiments, KClO₄ and α -Fe₂O₃ were mixed at a ratio of 0.5g : 0.5g.

Figures 2(A)-(C) show DTA and TG curves of KClO₄ with α -Fe₂O₃ (S₁-700), and the X-ray diffraction pattern of the partially decomposed KClO4 sample. A remarkable effect of the α -Fe₂O₃ additive on the DTA curve for the thermal decom-

Fig. 3. DTA curves of KClO₄ with α -Fe₂O₃ prepared by calcination of FeSO₄ · 7 H₂O in air. (a) KClO₄; (b) KClO₄ ÷ a -Fe₂O₃(S₁-700); (c) KClO₄ + a -Fe₂O₃(S₁-800); (d) KClO₄ + a -Fe₂O₃ (S₁-900); (e) KClO₄ + a -Fe₂O₃ (S₁-900); (e) KClO₄ + a -Fe₂O₃(S₁-1100). \uparrow = In

278

position is observed by comparing Fig. ZA with Fig. IA. The exothezmic reaction is initiated at about 435°C before the beginning of the fusion of KCIO₄. TG curve(B) **of the same sample shows that the decrease in weight begins at the same temperature as that at the onset of the exothermic peak of DTA (curve(A). The sample heated to** 440°C shown by the arrow on DTA curve(A) indicated no symptom of fusion, and the X-ray diffraction pattern(C) of this sample showed the presence of KCI. Accordingly, the exothermic DTA peak of $KClO₄$ with α -Fe₂O₃ seems to be due to the solid**phase thermal decomposition before the fusion_**

Fig. 4. DTA curves of KClO₄ with a-Fe₂O₃ prepared by calcination of Fe(OH)(CH₃COO)₂ in air. (a) KClO₄; (b) KClO₄ + a-Fe₃O₃(A-500); (c) KClO₄ + a-FezO₃(A-700); (d) KClO₄ + a-FezO₃ $(A-900)$; (e) $KCO_4 + \alpha$ -Fe₂O₂(A-1200). \uparrow = Initial decomposition temperature (*T*_i).

Influence of the preparative history of α -Fe₂O₃ additives on the thermal decomposition of KClO₁

The initial decomposition temperature (T_i) of KClO₄ was employed as a measure to indicate the reactivity of α -Fe₂O₃ with a different preparative history. The specific surface area and the crystalline size of α -Fe₂O₃ were also measured in order to be able to discuss the relationship between its preparative history and its reactivity. The lowest preparing temperature of α -Fe₂O₃ was determined by measuring the lowest temperature of decomposition of each iron salt to α -Fe₂O₃, using DTA and X-ray techniques; 500, 700 and 700°C for Fe(OH)(CH₃COO)₂, FeSO₄ · 7H₂O and $Fe₂(SO₄)₃$ · xH₂O, respectively. These three iron salts are chosen to compare the influence of differences in anion and in valence of cation.

Figure 3 shows DTA curves of $KClO₄-\alpha-Fe₂O₃(S₁)$ systems. Curve(a) and curves (b, c, d and e) correspond to pure $KClO₄$ and $KClO₄$ with α -Fe₂O₃(S₁) prepared at 700, 800, 900 and 1100 °C, respectively. The arrow on each curve indicates

Fig. 5. Relation between initial decomposition temperature (T_1) of KClO₄ and preparation temperature of a-Fe₂O₂. O, a-Fe₂O₂(A); e, a-Fe₂O₂(S₁); \bigcirc , a-Fe₂O₂(S₂).

the initial decomposition temperature (T_1) of KCIO₄. T_1 of pure KCIO₄, curve (a), is 530-550 °C. On the other hand, all α -Fe₂O₃ additives cause the exothermic reaction before the fusion of the salt and the lowering of T_i (curve (b)-(e)). The lower the **preparation temperature of** α **-Fe₂O₃, the lower** T_i **and the smaller the exethermic peak** of the molten-phase decomposition occurring after the fusion peak. The α -Fe₂O₃ additives have little effect on the solid-phase transition peak at 310°C.

Figure 4 shows the DTA curves of $KClO₄-x-Fe₂O₃(A)$ systems. Curve (a) and curves (b, c, d and e) correspond to pure $KClO₄$ and $KClO₄$ with α -Fe₂O₃(A) prepared at 500, 700, 900 and 1200°C, respectively. In the same manner as seen in Fig. 3, α -Fe₂O₃ additives cause remarkable lowering of T, and the solid-phase decom**position.**

Figure 5 shows the relation between the preparation temperature of α -Fe₂O₃ and T_i of KCIO₄-x-Fe₂O₃ systems. It is found that the value of T_i does not depend

Fig. 6. Relation between specific surface area and preparation temperature of α -Fe_xO_x. O, α -Fe_xO₃ (A); \bullet , a-Fe₂O₂(S₁); \bullet , a-Fe₂O₂(S₂).

on which starting iron salt was used for the preparation of α -Fe₂O₃, T_i increases almost linearly with increasing preparation temperature of α -Fe₂O₃ up to 1100°C, and α -Fe₂O₃ prepared at the lowest decomposition temperature of each iron salt **gives the greatest promoting effizct on the decomposition of KCIO,,**

Figure 6 shows the relation between the preparation temperature of α -Fe₂O₃ and the specific :urface area. The surface area of three series of α -Fe₂O₃ decreases with increasing preparation temperature, and the values decrease to less than $2m^2 g^{-1}$ by the calcination at temperatures above 1000°C. In Fig. 7, the crystalline size of α -Fe₂ O_3 is plotted as a function of its preparation temperature. It is seen that the **crystalline size increases with the preparation temperature_ From Figs- 6 and 7, it is** assumed that α -Fe₂O₃ prepared at a low temperature has a low crystallinity and is highly defective. On the other hand, all α -Fe₂O₃ samples prepared at high temperatures, above 1000°C, are considered to have similar properties regardless of the **starting materials- figure 8 indicates the relation between the crystalline size of** α -Fe₂O₃ and the initial decomposition temperature (T_i) . As shown by the broken

Fig. 7. Relation between crystalline size and preparation temperature of α -Fe₂O₂. O, α -Fe₂O₂(A); **.** $a - Fc_2O_3(S_1); Q$, $a - Fc_2O_3(S_2).$

Fig. 8. Relation between crystalline size and initial decomposition temperature (T_i). O, α -Fe₂O₂(A); \bullet , a-Fe₂O₂(S₁); \bullet , a-Fe₂O₂(S₂).

line, the values of T_i have a tendency to increase with an increase in the crystalline size, and the oxides with a crystalline size above 3000 Å tend to give the same values for T_i . t

DISCUSSION

It is found that the catalytic activity of α -Fe₂O₃ for the thermal decomposition of KClO₄ is related to the preparation temperatures rather than the kind of starting iron salts.

The thermal decomposition reaction of $KClO₄$ proceeds according to eqns (1) and (2) in which Cl^{7+} is reduced to Cl^{5+} and Cl^{-} , and O^{2-} is oxidized to O_2 . It is assumed, therefore, that the decomposition involves the electron transfer process.

As shown in the previous paper¹¹, the metal oxides with high electrical conductivity markedly promoted the thermal decomposition of KClO₄, and the promoting action by the oxides was considered to be related to both the electrical conductivity **and the oxygen abstraction power, and the following scheme was proposed for n-type** semiconductive oxide.

 $2e^-_{\text{(onice)}} + \text{ClO}_4^- \rightarrow 0_{\text{(onide)}}^2 + \text{ClO}_3^- \rightarrow 1/2O_2 + \text{ClO}_3^- + 2e^-_{\text{(onice)}}$ (3) where, $\vec{e}_{(axide)}$ = electron of conduction band of oxide, $O_{(axide)}^{2-} =$ oxygen ion abstracted by oxide.

Eqn (3) shows that the oxide promotes the transfer of electrons and the abstraction of oxygen of CIO₄ simultaneously.

 \overline{z} -Fe₂O₃ is usually classified^{20, 21} as an n-type semiconductive oxide. The donor center in the oxide is provided by the excess $Fe²⁺$ ions, which ionizes to $Fe³⁺$ to give the conduction electron. It is considered that the concentration of the Fe²⁺ ion in α -Fe₂O₃ varies with the preparation temperature. Especially, α -Fe₂O₃ prepared by the decomposition of Fe(OH)(CH₃COO)₂ at low temperatures, which were observed to have low crystallinity, may have a high concentration of Fe²⁺ ions, since the decomposition proceeds through Fe₃O₄ in an early stage. On the other hand, **Okamoto et al.²² estimated that the hydrous ferric oxide with low crystallinity has a** low ionization energy of Fe²⁺ and a large specific surface area. Accordingly, it is **considered that the high catalytic activity of a-Fe,O, prepared at a low temperature** is due to the high concentration of Fe^{2+} ions with low ionization energy. These Fe^{2+} **ions in the oxide may give electrons even at a low temperature, which Icads to the** promotion of the decomposition of KCIO₄ shown by eqn (3).

REFERENCES

- 1 P. K. Gallagher, D. W. Johnson, Jr., F. Schrey and D. J. Nitti, Am. Ceram. Soc. Bull., 52 (1973) **84z**
- **2 E SoIynmsi, K_ J&ky and Z G_ Szabb, Z_ Anorg. AI&_** *Chcm_, 368 (1969)* **21 l-**
- **3 Y_ Mitar& S_ S&iras&& K_ Manabcand T_ Kubo. I_ C"_ Sbc_ fpn.., Ind.** *C.m. S&r_. 72* **(1969) 1067_**
- 4 **V. Balek, J. Mater. Sci., 5 (1970) 714.**
- **4 C_ E Otto and H_ S_ Fry, I, Am,** *Chm_ .Sbc_.* **45 (1923) 1134_** .
- **6** E. S. Freeman and D. A. Anderson, *Nature*, 206 (1965) 378.
- 7 **M. M. Markowitz and D. A. Boryta, J. Phys. Chem., 69 (1965) 1114.**
- **8 W. K. Rudloff and E. S. Freeman,** *J. Phys. Chem.***, 74 (1970) 3317.**
- **9** M. R. Udupa, *Thermochim. Acta*, 12 (1975) 165.
- 10 R. Furuichi, T. Ishii and K. Kobayashi, *J. Therm. Anal.*, 6 (1974) 305.
- 11 **M. Shimokawabe, R. Furuichi and T. Ishii,** *Thermochim. Acta***, 20 (1977) 347.**
- **12** S. Brunauer and P. H. Emmett, *J. Am. Chem. Soc.*, 59 (1937) 1553.
- 13 S. Brunauer, P. H. Emmett and E. Teller, *J. Am. Chem. Soc.*, 60 (1938) 309.
- 14 **P. Scherrer, Göttinger Nachrichten, 2 (1918) 98**
- *15* **L Akxamkr, J.** *A&. Phys., 25* **(S954) 155.**
- **16** A. E. Harvey, Jr., M. T. Edmison, E. D. Jones, R. A. Seybert and K. A. Catto, J. Am. Chem. SIC_. **76 (1954) 3270_**
- 17 A. E. Harvey, Jr., C. J. Wassink, T. A. Rodgers and K. H. Stern, *Ann. N. Y. Acod. Sci.*, 79 (1960) **971-**
- **18** K. **H**. Stern and M. Bufalini, *J. Phys. Chem.*, 64 (1960) 1781.
- 19 **K**, G. II'in and B. I. Khorunzhii, *Russ. J. Phys. Chem.*, 46 (1972) 838.
- **2.0 R F_ G_ Gardxr, E Swutt and D. W. Tanner, i. Phys.** *C&m. Suiib!rs 24* **(1963) 1175; 24 (1963) 1183.**
- **21 E J. Morin,** *Phy.s_ Rcrr, 83* **(1951) 1005; 93 (1954) 1195**

.

22 G. Okamoto, R. Furuichi and N. Sato, *Electrochim. Acta*, 12 (1967) 1287.