DIAGRAMME DE PHASE LIQUIDE-SOLIDE POUR LE SYSTÈME BINAIRE SULFOLANE + 2-MÉTHYL-2-PROPANOL

AMERICO INGLESE

Istituto di Chimica fisica, Universita di Bari, Via Amendola 173, Bari (Italy)

LILIANA JANNELLI Istituto di Chimica Generale, Facolta di Ingegneria, Piazzale Tecchio, Napoli (Italy) (Reçu le 31 mars 1977)

ABSTRACT

Solid + liquid phase diagram for sulfolane + 2, methyl-2, propanol mixture has been obtained by thermal analysis.

The phase diagram shows the existence of one eutectic at $x_1 = 0.772$ and T = 278.8 K and the formation of solid solutions in the region $0.93 \le x_1 < 1$.

The cooling curves of 2, methyl-2, propanol and of solutions at $0.15 \le x_1 \le 0.75$ confirm the existence of three crystalline forms for this compound.

résumé

Le diagramme de phase liquide-solide pour le système binaire sulfolane+2méthyl-2-propanol a été obtenu par analyse thermique.

Le diagramme de phase montre l'existence d'un eutertique à $x_1 = 0.772$ et T = 278.8 K et la formation des solutions solides dans la région $0.93 \le x_1 < 1$.

Les courbes de refroidissement du 2-méthyl-2-propanol et celles des solutions de composition $0.15 \le x_1 \le 0.75$ confirment l'existence de trois formes cristallines pour cette substance.

INTRODUCTION

Les équilibres de phase liquide-solide ont été étudiés pour les systèmes sulfolane \div benzène, \div tétrachlorure de carbone, \div *p*-dioxane¹⁻³. La formation d'un composé d'addition à l'état solide était observé pour les systèmes sulfolane \div tétrachlorure de carbone² et sulfolane \div *p*-dioxane³.

L'évaluation des propriétés chimie-physiques des constituants purs^{4, 6} et des proprietés thermodynamiques des mélanges^{2, 3, 5} amenait les auteurs à attribuer la formation des composés à une géométrie cristalline favorable plutôt qu'à des fortes interactions spécifiques.

Pour le système sulfolane -- benzène, un simple eutectique était observé.

Pour obtenir des informations ultérieurs sur le comportement thermodynamique des mélanges contenant le sulfolane, les temperatures d'équilibre liquide-solide pour le système sulfolane ÷ 2-méthyl-2 propanol étaient mesurées.

Le 2-méthyl-2-propanol, en ayant le même volume molaire et en ayant été inclus par Timmerman⁶ dans la classe des substances globulaires, il devrait être géométriquement apte à former des composés à l'état solide avec le sulfolane comme dans le cas du tétrachlorure de carbone.

Cependant, à la différence du tétrachlorure de carbone, le 2-méthyl-2-propanol est fortement associé.

Avec l'étude cryoscopique de ce système on veut, entre autre, mettre en évidence l'influence de l'association du 2-méthyl-2-propanol sur la formation de composés à l'état solide provoquée par une géométrie cristalline favorable.

Pour ce système les valeurs légèrement négatives des volumes d'excès⁷ étaient attribuées à variation de structure de l'alcool, à effets geometriques et à interactions entre molécules différentes.

PARTIE EXPÉRIMENTALE

Le sulfolane commercial (Shell Co. division de chimie industriel) était purifié et séché comme déjà reporté⁴.

Le titrage, sur un échantillon du produit utilisé, avec le réactif de Karl-Fisher indiquait que la quantité d'eau présente ne surpressait pas 0.007% en poid.

La conductivité de tel échantillon n'est pas superieur à $1 \times 10^{-8} \Omega^{-1}$ cm⁻¹. Le 2-méthyl-2-propanol, C. Erba RP-ACS, était tenu à reflux sur CaO pour plusieurs heures, successivement distillé et gardé sur tamis moleculaire 4M dans une boîte à gants.

L'appareil cryoscopique et les procédés suivis ont été décrits précédemment⁴.

Les températures d'équilibre liquide-solide étaient mesurées avec un thermomètre à résistance de platine (calibré par N.B.S.) associé avec un pont de Mueller G2 (Leeds & Northrup). Le calibrage du thermomètre était contrôlé à la température du point triple de l'eau (273.16 K) et au point de fusion de la glace (273.15 K). Les températures de solidification étaient déterminées de l'intersection de la courbe de refroidissement du liquide et celle de cristallisation. Les températures de solidification sont estimées être précises à \pm 0.05 K.

Le diagramme de phase a été déterminé principalement des courbes de refroidissement, mais, où le sous-refroidissement était considérable les courbes de chauffage étaient préférées de manière à éliminer l'erreur dû à l'extrapolation.

Les solutions étaient préparées par pesée des composants à $\frac{1}{12}$ 0.1 mg avec une balance analytique.

Toutes les opérations relatives à la preparation des solutions étaient faites en utilisant les précautions nécessaires pour reduire l'évaporation et la contamination des composants.

TABLEAU 1

TEMPÉRATURES DE SOLIDIFICATION T_t , TEMPÉRATURES DU SOLIDUS T_s , TEMPÉRATURES DE SOLIDIFICATION MÉ.fastable T_m le températures lutectiques T_c pour le système sulfolane(1) \div 2-métryl-2 propanol(2)

<i>x</i> 1	T _f (K)	T _m (K)	T _e (K)	<i>x</i> 1	$T_t(K)$	T _∞ (K)	T ₅ (K)	T _e (K)
0	298.72			0.7722				278.83
0.0218	296.35			0.7941	279.64			278.81
0.0407	295.00			0.8094	280.21			278.81
0.0623	293.55			0.8381	281.80	275.20		278.81
0.0759	292.64			0.8591	282.65	278.00		
0.1116	291.57			0.8726	282.95	279.95		
0.1553	290.68	290.39		0.8806	283.42	281.62		
0.2015	289.89	289.49		0.9009	284.27			
0.2421	289.57	289.01		0.9127	286.17			
0.2999	289.01	288.44		0.9218	287.15			
0.3475	288.99	288.04	278.60	0.9325	289.20		287.92	
0.3959	288.92	287.71	278.60	0.9419	290.95		289.80	
0.4448	288.56	287.40	278.67	0.9516	292.73		291.47	
0.4970	287.97	287.04	278.76	0.9614	294 .37		293.40	
0.5464		286.41		0.9715	296.19		294.98	
0.5958	286.22	285.23		0.9818	298.01		296.86	
0.6150	285.59	284.87	278.77	0.9923	299.99		299.12	
0.6473	284.52	283.83		0.9964	300.72			
0.6670	283.83	283.12	278.77	1	301.60			
0.7234	281.55	280.81	278.81					
0.7276	280.98	280.56	278.83					
0.7545	279.74	278.91	278.81					

Fig. 1. Diagramme de phase pour le système sulfolane (1) + 2-méthyl-2-propanol (2).

Fig. 2. Courbe de refroidissement du 2-méthyl-2-propanol pur.

Fig. 3. Courbe de refroidissement pour une solution de composition $x_1 = 0.242$.

RÉSULTATS ET DISCUSSION

Les résultats expérimentaux et le diagramme de phase sont reportés dans le Tableau I et la Fig. 1.

La valeur expérimentale de la température de fusion que nous avons trouvée

pour le 2-méthyl-2-propanol est en bon accord avec les valeurs trouvées par Simonsen⁸, De Forcrand⁹ et Oetting¹⁰.

La courbe de refroidissement du 2-méthyl-2-propanol (Fig. 2) et œux des solutions de composition $0.15 \le x_1 \le 0.75$ (Fig. 3) revèlent un comportement complexe à l'état solide pour le 2-méthyl-2-propanol comme il fallait s'y attendre sur la base des considerations de plusieurs auteurs^{6, 8, 10}.

A cause de la basse valeur de l'entropie de fusion (légèrement supérieure à $5 \text{ cal mol}^{-1} \text{ K}^{-1}$) il était classifié par Timmerman⁶ entre les "molecules globulaires" ou "cristaux plastiques".

Ceci implique que cette substance ait deux ou plusieurs formes cristallines. En effet, Atkins¹¹ trouvait des difficultés à obtenir un échantillon ayant une température de solidification constante pour une appréciable période de temps. Après de nombreuses exéperiences il était enclin à croire que l'instabilité du point de fusion était due à l'existence de deux differents modifications cristallines.

Simonsen et Washburn⁸ observaient pour cet alcool, une deuxième forme cristalline ayant une température de solidification de 298.15 K.

Les capacités calorifiques mesurées par Oetting¹⁰ montrent que cette substance présente trois formes cristallines: les cristaux I qui fondent à 298.97 K; les cristaux II stables a basse température et qui se transforment en cristaux I à 286.14 K; les cristaux III obtenus des cristaux II, en conditions particulaires, à 281.54 K et qui se transforment en cristaux I à 294.47 K.

Les résultats cryoscopiques que nous avons obtenus sont en accord avec les conclusions de Oetting¹⁰.

En effet, la courbe de refroidissement du 2-méthyl-2-propanol (Fig. 2) montre une transition à l'état solide à 287.23 K que nous indiquerons comme transition cristal I-cristal II pour analogie avec les resultats de Oetting¹⁰.

De la courbe reportée en Fig. 2, il est possible de déduire que la chaleur de transition cristal I-cristal II est remarquablement inférieure à celle de fusion de la forme cristalline I.

L'existence de la forme cristalline III peut-être deduite des courbes de refroidissement de solutions de concentration $0.15 \le x_1 \le 0.75$ qui sont du type montré en Fig. 3.

Probablement le premier trait de la courbe est dû à la solidification des cristaux I qui successivement se transforment dans la forme cristalline stable a cette température.

Cette forme cristalline ne peut pas être constituée des cristaux II puisque elle se forme aussi à températures supérieures a celle de la transition cristal I-cristal II. II s'agit, probablement, de la forme cristalline III (obtenu par Oetting¹⁰ de la forme cristalline II) dont la formation (en ce cas des cristaux I) est facilitée par la présence du sulfolane qu'en stabilise la structure.

Il n'est pas possible de determiner des mesures cryoscopiques la température de transition cristal I-cristal III et d'évaluer l'entité de la chaleur de transition.

Les valeurs trouvées par Oetting¹⁰ pour la transition cristal III-cristal I sont respectivement 294.47 K et 117 cal mol⁻¹. On peut observer que pour le deux transitions la chaleur mise en jeu est remarquablement inférieure à la chaleur de fusion $(1602 \text{ cal mol}^{-1})$.

Ces résultats sont en contraste avec les propriétés des "cristaux plastiques" qui présentent une ou plusieurs transitions hautement énergétiques à l'état solide. En outre, les études aux rayon X¹⁰ montrent que les formes cristallines I et II sont complexées et excluent la possibilité du système cubique caractéristique des "cristaux plastiques".

Le 2-méthyl-2-propanol devrait donc être consideré comme une substance ayant quelque propriété typique des "cristaux plastiques" (entropie de fusion ~ 5 cal mol⁻¹ K⁻¹ et haut point triple), mais il ne devrait pas être inclus entre les substances strictement plastiques.

Le diagramme de phase, avec un eutectique à $x_1 = 0.772$ et T = 278.8 K, présente une région relativement plate dans l'intervalle $0.2 \le x_1 \le 0.5$.

Puisque une tangente horizontale sur les diagrammes des phases liquide-solide est une condition pour la séparation en deux phases liquides, il est probable que ce système ait une solubilité partielle à l'état liquide.

Dans la region riche en sulfolane les températures de solidification sont situées sur deux lignes droites que se croisent à 284.2 K.

Ceci dénote la presence d'une transition à l'état solide (phase plastique \rightarrow phase cristalline) pour le sulfolane⁴. La température de transition (284.2 K) est sensiblement plus basse de celle du sulfolane pur (288.6 K).

Celà est dû à la formation de solution solides entre le sulfolane et le 2-méthyl-2-propanol dont les températures de commencement et fin de solidification étaient obtenues expérimentalement pour les solutions de concentration comprises dans l'intervalle $0.93 \le x_1 < 1$. Dans la region $0.77 \le x_1 \le 0.90$ un équilibre metastable (ligne pointillée en fig. 1) était observé.

Aucune évidence de formation d'un composé à l'état solide entre le sulfolane et ie 2-méthyl-2-propanol émerge du diagramme de phase.

Très probablement la forte association du 2-méthyl-2-propanol joue un'influence négative sur la formation de composés à l'état solide derivés d'une géometrie cristalline favorable.

BIBLIOGEAPHIE

- 1 L. Jannelli et A. Sacco, J. Chem. Thermodyn., 4 (1972) 715.
- 2 A. Sacco, A. Inglese, P. Ciani et A. Dell'Atti, A. K. Rakshit, Thermochim. Acta, 15 (1976) 71.
- 3 L. Jannelli, A. Inglese, A. Sacco et P. Ciani, Z. Naturforsch., 30a (1975) 87.
- 4 M. Della Monica, L. Jannelli et U. Lamanna, J. Phys. Chem., 72 (1968) 1068.
- 5 A. Sacco et L. Jannelli, J. Chem. Thermodyn., 4 (1972) 191.
- 6 J. Timmerman, J. Phys. Chem. Solids, 18 (1961) 1.
- 7 A. Sacco et A. K. Rakshit, J. Chem. Thermodyn., 7 (1975) 257.
- 8 D. R. Simonsen et E. R. Washburn, J. Am. Chem. Soc., 68 (1946) 235.
- 9 M. De Forerand, Compt. Rend., 48 (1903) 1034.
- 10 F. L. Oetting, J. Phys. Chem., 67 (1963) 2757.
- 11 W. R. G. Atkins, J. Chem. Soc., 99 (1911) 10.