A STUDY OFTHE FORMATION OF LiNbO, IN THE SYSTEM Li2C0,-Nb,05

 α , α , α

SHIRO SHIMADA, KOHEI KODAIRA AND TORU MATSUSHITA

Department of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060 (Japan) *(Rccd\cd 21 MaIdI 1977)*

ABSTRACT

The formation process of LiNbO₃ in the system Li₂CO₃-Nb₂O₅ was discussed from the results of non-isothermal or isothermal TG experiments and X-ray analysis. The mixture Li_2CO_3 and Nb_2O_5 in mole ratios of 1:3, 1:1 or 3:1 was heated at a rate of 5^oC min⁻¹ or at various temperatures fixed in the range 475 to 677^oC. If the system has a composition of $Li_2CO_3 + 3Nb_2O_5$ or $3Li_2CO_3 + Nb_2O_5$, the reaction between Li_2CO_3 and Nb_2O_5 proceeds with CO_2 evolution to form LiNbO₃ at ca. 300–600°C, but Nb₂O₅ or Li₂CO₃ remains unreacted. A composition of Li₂CO₃ $+$ $Nb₂O₅$ gives LiNbO₃ at 300-700°C. The diffusion of $Li₂O$ through the layer of $LiNbO₃$ is rate-controlling with an activation energy of 51 kcal mol⁻¹. The reaction between LiNbO₃ and $Nb₂O₅$ gives LiNb₃O₈ at 600-700^oC. At 700-800^oC, a slight formation of Li_3NbO_4 occurs by the reaction between $LiNbO_3$ and Li_2O at the outer surface of LiNbO₃ and the Li₂O component of Li₃NbO₄ diffuses toward the boundary of the LiNb₃O₈ layer through the LiNbO₃ layer. The single phase of LiNbO₃ is **formed above 850°C.**

INTRODUCTION

Lithium niobate (LiNbO₃) is a ferroelectric material having a high Curie point. Single crystals of LiNbO₃ are of importance as electro-optic materials¹. Sintered **ceramics of LiNbO, are of great interest because they have many applications in the** field of dielectrics. LiNbO₃ is formed by the solid-state reaction between Li_2CO_3 and Nb₂O₃. The preparation of reactive powder of LiNbO₃ with homogeneous composition is important to obtain its dense sintered ceramics. Therefore, it is necessary to study the formation of LiNbO₃ by the reaction between $Li₂CO₃$ and $Nb₂O₅$. In this **paper, we elucidated the mechanism for the formation of LiNbO, in the system** Li₂CO₃-Nb₂O₅ with various compositions.

EXPERIMENTAL

The starting materials were niobium pentoxide (99.9% pure) and lithium carbonate (G.R. grade). The particle size of $Nb₂O₅$ for 400 particles was micro-

Fig. 1. Log normal probability graph of Nb₂O₅ particles size.

scopically determined in the range of $0.1-1.0$ μ . Figure 1 shows the log probability **~10s of the size distribution of NbzO, particles. This indicates that the Nb,O,** particle sizes obey the log normal distribution. The Nb₂O₅ particles were approximately cylindrical in shape. By means of SEM, the particle size of Li₂CO₃ was found to be in the range $1.0-3.0 \mu$. The particles were approximately platy in shape. Powder of $Nb₂O₅$ and $Li₂CO₃$ was thoroughly mixed in a mortar with a pestle in the mole ratios of 1:3, 1:1, 3:1. The mixed powder was stored in a desiccator with silica gel.

The reaction between Nb₇O₅ and Li₂CO₃ was followed by a TG experiment. The TG experiment was carried out with an apparatus attached to a RMB-SV type microbalance (Shimazu Seisaku Sho), the accuracy of which corresponds to \pm 1%. **The mixed powder (ca_ 30 rns) was Ii_ehtly packed in a fused-silica basket (7 mm in diameter and 3 mm in depth) and it was suspended in a fused-silica tube (30 mm in diameter) through which dry air or nitrogen was allowed to flow at a rate of 20 ml inin-'. The reaction temperature was measured with a Pt-Pt/i3%Rh thermocouple, being attached to the inside of the tube at the height of the basket. The non-isothermal TG experimenr was carried out by heating at a rate of 5'C** min- ' **under flowing air. The isothermal TG experiment was carried out at various temperatures fixed in the range of 475 to 677'C under the same condition. The buoyancy correction was checked at elevated temperatures under flowing air. X-ray analysis was performed** for the samples obtained by TG experiments. The DTA experiment was carried out with a Thermoflex apparatus (Rigaku-Denki). A heating rate of 10°C min⁻¹ was applied. x-Al₂O₃ was taken as the standard material.

RESULTS

Figure 2 shows weight loss curves on heating of a mixed powder of $Li₂CO₃$

Fig. 2. Weight loss curves on heating the mixed powder of $Li₂CO₃$ and Nb₂O₃ in mole ratios 1:1 (curve A), 1:3 (curve B) or 3:1 (curve C). $\varnothing = 5^{\circ}$ C min⁻¹, flowing air: 20 ml min⁻¹.

Fig. 3. DTA curves on heating the mixed powder of $Li₂CO₃$ and Nb₂O₅ in mole ratios 1:1 (curve A), 1:3 (curve B) or 3:1 (curve C). $\varnothing = 10^{\circ}$ C min⁻¹, Pt-Pt/13%Rh thermocouple, static air. Sample weight; curve A: 339 mg, curve B: 452 mg, curve C: 348 mg.

Fig. 4. X-ray diffraction patterns of samples heated to temperatures corresponding to points on 1G curve using a composition of Li_2CO_3 \div 3Nb₂O₃. \triangle = Nb₂O₃; \times = LiNbO₃; \bigcirc = LiNb₃O₃. $\varnothing = 5^{\circ}$ C min⁻¹; (a) 560°C, (b) 650°C, (c) 880°C.

and Nb₂O₅ in the mole ratios of **1**:1 (curve A), 1:3 (curve B) or 3:1 (curve C) under flowing air. The ordinate corresponds to the percentage of the weight loss of CO₂ **calcuIated from the amount of Li,COs contained in the mixed powder by use of the** decomposition equation of Li_2CO_3 : $Li_2CO_3 \rightarrow Li_2O + CO_2$. In curve A, the weight loss continues to increase from 300°C, the degree of the increase falling slightly at **ca. 600°C and is completed at 720°C. In curve B, it begins to occur at 3OO"C, a rapid increase being observed from 48O'C and is completed aL 630°C. Curve C shows that there is an inflection point at ca. 6OO'C, as indicated by the dotted line. The weight loss in curve C may proceed at two stages: the first at 3OO-600°C and the second at 6OO-820°C. Figure 3 shows DTA curves on heating of the mixed powder of Li,CO,** and Nb₂O₅ in the mole ratios 1:1 (curve A), 1:3 (curve B) or 3:1 (curve C). Curve A **shows an endothermic peak at 470-720°C and an exothermic peak at 72O-SOO"C.** Curve B shows one endothermic peak at 500–640°C and two exothermic peaks at **6404310°C. Curve C shows one large endothermic peak in the range 470-78O'C.**

Figure 4 shows the X-ray diffraction patterns of the samples heated to temperatures corresponding to points on the TG curve with a composition of Li , CO, $+$ **3Nb,05. At 560 and 65O'C, the peaks for LiNbO, are observed, those for Nb,O,** remaining. The weak (410) reflection for $LiNb₃O₈$ is seen² at 650°C. The single phase of LiNb₃O₈ is obtained at 880°C. Fig. 5 shows the X-ray diffraction patterns of the samples heated to temperatures on the TG curve with a composition of $3Li₂CO₃$. Nb₂O₅. The peaks for LiNbO₃ are observed, those for Li₂CO₃ and Nb₂O₅ remain **at 6OO'C. With a rise in reaction temperature at 70&87O'C, the peaks for LiNbOa** are lowered and those³ for Li₃NbO₄ are simultaneously increased. The single phase **cf Li,NbO; is obtajned at 91O'C. Figure 6 shows changes of the X-ray intensities** for LiNbO₃, LiNb₃O₈, Li₃NbO₄ and Nb_2O_5 in the samples heated to temperatures on the TG curve when a system with a composition of $Li₂CO₃$ and $Nb₂O₅$ is used. LiNbO₃ increases continuously with a rise in reaction temperature. However, Nb₂O₅

Fig. 5. X-ray diffraction patterns of samples heated to temperatures corresponding to points on TG curve using a composition of $3Li_2CO_3 + Nb_2O_5$. \bigcirc = LigCO₃; \bigtriangleup = Nb₂O₃; \times = LiNbO₃; ($\color{red} \bullet =$ Li₃NbO₄. $\varnothing = 5^{\circ}$ C min⁻¹; (a) 600°C, (b) 700°C, (c) 740°C, (d) 790°C, (e) 870°C, (f) 910°C.

Reaction temperature (°C)

Fig. 6. Changes of X-ray intensities for Nb2O₅, LiNbO₃, LiNb₃O₈ or Li₂NbO₄ in samples heated to temperatures corresponding to points on TG curve using a composition of $Li₂CO₃ \div Nb₂O₃$. ∇ = Nb2Os(001); Δ = LiNbOs(012); \bigcirc = LiNb3Os(410); \bigcirc = Li2NbOs(400). \emptyset = 5°C/min.

Fig. 7. Changes of intensities of (410) reflection for LiNb₃O₃ in samples with a composition of Li₂CO₃ + Nb2O₃ beated at various temperatures. $O - 600^{\circ}C$; $O = 700^{\circ}C$; $\bigcirc = 800^{\circ}C$; $O = 900^{\circ}C$.

Fig. 8. Weight loss curves of the mixed powder of $Li₂CO₂$ and Nb₂O₃ in mole ratio 1:1. $O = 475^{\circ}C$; **O** $-$ 510°C; ● $-$ 557°C; ① = 606°C; \ominus -. 636°C; \triangle - 677°C.

continues to decrease and disappears at 75O"C, which is close to the temperature of the complete weight loss determined in Fig. 2(A). L.iNb,08 begins to appear at ca. 600°C, reaches the maximum at 700°C and disappears at 850°C. The weak peak for $Li₃NbO₄$ is observed at 700-750°C. Figure 7 shows the X-ray intensity for LiNb₃O₈ in the samples heated at various temperatures in the range $600-900^{\circ}C$ when a composition of Li_2CO_3 ÷ Nb₂O₅ is used. LiNb₃O₈ increases continuously after 0.5 **h at 600°C and decreases after 0.5 h at 700-900°C. It disappears after 5 h at MWC or 2 h** *at 900°C.*

Figure 8 shows weight loss curves of the mixed powder of Li₂CO₃ and Nb₂O₅ at temperatures in the range 475 to 677°C. The weight loss increases parabolically at **each** temperature.

DISCUSSION

In each composition, the amount of weight loss when the reaction was finished was consistent with that of CO₂ calculated from the complete decomposition of $Li₂CO₃$ (Fig. 2). This indicates that the weight loss on TG curves is due to $CO₂$ evolution. It is said⁺ that Li , $CO₃$ begins to decompose to $Li₂O$ and $CO₂$ at 618^oC. No weight loss was observed in the TG measurement of pure $Li₂CO₃$ up to ca. 500 °C. **There was little** difference **in the weight loss curyes under the diflcrcnt atmospheres.** The results of the X-ray analysis for the samples obtained by TG experiments (Figs. 4-6) showed the formation of lithium niobate $(LiNbO₃$, $LiNb₃O₈$ or $Li₃NbO₄$. **These imply that CO₂ evolution is associated with the reaction between** Li_2CO_3 **and Nb,O,, resulting in the formation of lithium niobate_**

With a composition of $Li_2CO_3 + 3Nb_2O_5$, CO₂ evolution started at 300°C, **a rapid increase in its amount being observed from 480°C and was finished at 630°C (Fig_ 2(B)_ The temperature range of 480430°C coincides with that of theendothermic peak on DTA curve (Fig. 3(B)_ The results of the X-ray analysis showed the presence** of LiNbO₁ at 560 and 650°C. Thus, it is concluded that the reaction between $Li₂CO₃$ and $Nb₂O₅$ proceeds endothermally with the formation of $LiNbO₃$ at 300-630^oC. The presence of LiNb_3O_8 above 650 °C is due to the further reaction between LiNbO_3 and Nb_2O_5 : LiNbO₃ \div Nb₂O₅ \rightarrow LiNb₃O₈. The formation of LiNb₃O₈ may **exothemally proceed at the two stages, as shown in Fig. 3(B).**

As described above, the reaction between $3Li₂CO₃$ and $Nb₂O₅$ proceeds at the **two stages: the first at 300-600°C and the second above 6OO"C_ The reaction** at **the** two stages accompanies the large endothermic effect, as shown in Fig. 3(C). When the first stage was finished at 600°C, LiNbO₃ was formed (Fig. 5). The percentage of **CO2 evolution reached 34% at 60O'C. This indicates thzt the equimolecular reaction between Li,C03 and Nb,05 occurs to form LiNb03 at the first stage. Li,NbO, was** detected by X-ray analysis at 700°C. It is concluded that further reaction between $LinbO₃$ and $Li₂CO₃$ occurs to form $Li₃NbO₄$ at the second stage.

With a composition of Li_2CO_3 \div Nb₂O₅, CO₂ evolution started at 300°C, the degree of its increase falling slightly above 600°C and was finished at 720°C **(Fig_ 2(A). The results of X-ray analysis (Fig_ 6) showed the increase of LiNbOa** with simultaneous decrease of $Nb₂O₅$ at 500–700°C. On the other hand, LiNb₃O₈ **began to form at 600°C and disappeared at 850°C through the maximum at 700°C.** This indicates that the reaction between Li_2CO_3 and Nb_2O_5 occurs to form $LiNbO_3$ with evolution of CO₂ at 300-700°C and the further reaction between LiNbO₃ and Nb_2O_5 results in the formation of LiNb₃O₈ at 600-700°C. LiNb₃O₈ in addition to LiNbO₃ remains in the reaction product (Fig. 6), even after complete evolution of $CO₂$ at 720[°]C. Thus, there must be an amount of $Li₂O$ in it because the equivalent amount of Li_2CO_3 and Nb_2O_5 is added. This may be consumed for the Li_3NbO_4 formation by the reaction between LiNbO₃ and Li₂O. This is supported by the formation of Li₃NbO₄ observed at 700-750°C. Accordingly, it is thought that the LiNbO_3 formation above 700 °C is due to the reaction between LiNb_3O_8 and Li_3NbO_4 .

DTA curve 3-A can be explained as follows: an endothermic peak is due to $CO₂$ evolution and an exothermic peak corresponds to $LiNb₃O₈$ formation due to the **overlap of the endothermic** peak **with the exothcrmic peaks corresponding to those of curve 3-B.**

,'., described above, the weight loss in Fig_ 8 is associated with CO, evolution, i.e., LiNbO₃ formation. LiNb₃O₈ increased continuously at 600° C after 0.5 h (Fig. 7), the condition of which corresponds nearly to the fractional conversion $F = 60-70\%$ of LiNbO₃ formation in Fig. 8. In the range $F = 0-60\%$ without LiNb₃O₈ formation, kinetic data of Fig. 8 were treated with various equations⁵⁻⁸. As a result, it was found that the kinetic data fit best to Jander's equation⁵, in spite of some deviation. The **main cause for the deviation is considered to be due to the wide size distribution of** Nb_,O_s particles, as shown in Fig. 1. Gallagher⁹ has evaluated the effect of the size **distribution of particles on the reaction rate by use of the Serin-Ellickson equation.** We similarly applied his method to the data in Fig. 8 by introducing the size distribu**tion of particles into the Jander's equation. The equation is expressed by**

$$
[1 - (1 - F)^{1/3}]^2 = kt
$$
 (1)

$$
k = 2DC_0/r^2 \tag{2}
$$

$$
F = 1 - \left(1 - \sqrt{2D C_0 t / r^2}\right)^3
$$
 (3)

where $k =$ rate constant, $t =$ reaction time, $D =$ diffusion coefficient, $C_0 =$ concentration of reactant at the interface, and $r =$ particle radius. The Nb₂O₅ particles **were distributed according to the log normal distribution (Fig. 1). It is necessary to evaluate the fractional conversion about each of particles with the log normal distribution and then compute the rota1 fractional conversion of all the reacted particles. The** total fraction conversion, F , is expressed by^{9, 10}

$$
F = \sum_{m=-\infty}^{m=\infty} F_m(\delta V/V)_m = \sum_{m=-\infty}^{m=\infty} [1 - \left(1 - \sqrt{G/\sigma_{g}^{2m/L}}\right)^3] (\delta V/V)_m \tag{4}
$$

where $F_{\rm m} =$ the fractional conversion in a particle with a radius equal to that of the m th slice on the log normal distribution, $(\delta V/V)_{\pi}$ = the volume fraction in the *m* th slice, $G = 2DC_0I/(r_s)^2(r_s)$ = geometric mean radius by volume), $\sigma_s =$ geometric standard deviation by volume, $L =$ the number of slices into which the interval log $\sigma_{\rm g}$ is divided (L = 5 in this case), $m=$ a number: -14.5, . . ., -1.5, -0.5, 0,0.5, 1.5, . . ., 14.5, for L -5 . In eqn (4), the standard deviation range of $+3\log \sigma_{\epsilon}$ to $-3\log \sigma_{\epsilon}$ is put on both sides of the mean. From Fig. 1, the values of both r_s and σ_s are graphically evaluated¹¹: $r_s = 1.8$ and $\sigma_s = 2.0$. If a value of G is evaluated from eqn (4) for a measured value of F, Jander's curves are computed over a wide range of values of σ_{m} on a reduced time scale¹² and can be compared with the experimental data on the **same scale_ However, it is impossibfe to compute G directly from F. Hence, the G** value corresponding to a given value of F in $F = 0-0.70$ was computed within an error less than ± 0.002 of \vec{F} value by trial and error on a FACOM230-60/75 computer.

Fig. 9. Computed Jander's curves on a reduced time scale as a parameter of $\sigma_{\rm g}$ and experimental points of Fig. 8 plotted on the same time scale. Experimental points: $Q \sim 510^{\circ}C$; $Q \sim 557^{\circ}C$; $x = 606^{\circ}C$; $\bullet = 636^{\circ}C$.

Fipre 9 shows the experimental points of Fig. 8 plotted on a reduced time scale and the Jander's curves computed on the same scale as a parameter of σ_{e} by use of the above computed values of F and G. The curve for $\sigma_{\sigma} = 1$ corresponds to the case **of uniform particle size. A comparison of the experimental points with the Jandcr's** curves for a variety of σ_{ϵ} indicates that LiNbO_3 formation can be described by Jander's equation having the particle size distribution of $Nb₂O₅$ in $\sigma₆ = 3.0$ to 4.0. The discrepancy of the above σ_g value with σ_g -. 2.0 determined from Fig. 1 may result from a difference in the shape of particles⁹: the particle size in the case of Fig. 8 is **assumed to be spherical, but is cylindrical in reality. The** *k* **constants were obtained** in both cases of $\sigma_{\rm g} \sim 3.0$ and 4.0 and the value of activation energy from the plots of log *k* against $1/T$ was determined to be 51 kcal mol⁻¹. The SEM observation **showed that the reacted pwders at 750°C in Fig.** *2(A)* **are cylindrical in spite of a reduction in size. On the contrary, the plate-like particles which have the same shape** as $Li₂CO₃$ particles were not observed. This suggest that the reaction between $Li₂CO₃$ and Nb₂O₅ proceeds by the diffusion of Li₂O through the formed layer of LiNbO₃.

The mechanism for $LiNbO₃$ formation in the system $Li₂CO₃-Nb₂O₅$ is summarized as follows. With a composition of $Li_2CO_3 \div 3Nb_2O_5$ or $3Li_2CO_3 \div$ $Nb₂O₅$, the equimolecular reaction between $Li₂CO₃$ and $Nb₂O₅$ proceeds with $CO₂$ evolution to form LiNbO₃ at ca. 300-600°C, but $Nb₂O₃$ or Li₂CO₃ remains unreacted. The reaction of a composition of $Li_2CO_3 + Nb_2O_5$ can be illustrated by Fig. 10. At 300–700°C, the reaction between Li_2CO_3 and Nb_2O_5 occurs to form LiNbO₃. The **diffusion of Liz0 through the layer of** LiNbO, is **rate-controlling with the activation** energy of 51 kcal mol⁻¹. At 600-700°C, LiNb₃O₈ results from the reaction between LiNbO₃ and Nb₂O₅. CO₂ evolution is finished at 720[°]C. Near this temperature, an excess amount of $Li₂O$ remains at the outer surface of $LiNbO₃$. $Li₂O$ reacts with

144

Fig. 10. Schematic representation of a powder reaction of a composition of Li_zCO₃ + Nb₂O₃. (a) 300-600°C; (b) 600-700°C; (c) 700-850°C; (d) above 850°C.

LiNbO₃ to form Li₃NbO₄. At 700–850 °C, the Li₂O component of Li₃NbO₄ diffuses toward the boundary of the LiNb₃O₈ layer through the LiNbO₃ layer. The single phase of LiNbO₃ develops above 850°C.

ACKNOWLEDGEMENTS

We express our thanks to Dr. H. Ochiai, Department of Machinery Design, for helpful discussion in computer programming. Financial support for this work was given by The Sakkokai Foundation.

REFERENCES

- G. E. Peterson, A. A. Ballman, P. V. Lenzo and P. M. Bridenbaugh, Appl. Phys. Lett., 5(1964) 62. 1
- 2 M. Lundberg, Acta Chem. Scand., 25 (1971) 3337.
- 3 G. Blasse, Z. Anorg. Allg. Chem., 326 (1963) 44.
- Nippon Kagaku Kai Hen, Kagakubinran Oyohen, 1973, p. 169.
- W. Jander, Z. Anorg. Allg. Chem., 163 (1927) 1. 5.
- 6 K. J. Laidler, Chemical Kinetics, McGraw-Hill, New York, 1964, p. 316.
- B. Serin and R. J. Ellickson, J. Chem. Phys., 9 (1941) 742. 7.
- 8 A. M. Ginstling and B. I. Brounshtein, J. Appl. Chem., 23 (1950) 1327.
- 9 K. J. Gallagher, in G. H. Schwab (Ed.), Reactivity of Solids, Amsterdam, 1965, p. 192.
- 10 H. Herdan, Small Particle Statistics, Elsevier, Amsterdam, 1953, p. 113.
- 11 H. Herdan, Small Particle Statistics, Elsevier, Amsterdam, 1953, p. 132.
- 12 J. H. Sharp, G. W. Brindley and B. N. Ivarahari Achar, J. Am. Ceram. Soc., 49 (1966) 379.