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The traditional method for pudty determination by analysis of the peak shape 

of the melting transition has included fitting to a linear relation between sample 
temperature (T) and the reciprocal iraction molten (lb/)_ This technique, however, 
necessitates the use of a series of calibnnts to determine the proper choice of limits 

for Ipi as a function of purity. In this paper, a non-linear relation between T and 
1i-i is developed and applied tc the determination of metallic impurities in Pb in the 
range of a few to IOQO parts per million. The results are found to be independent of the 
range of I,$ used. The use of difierential scanning calorimetry in this determination 
is discussed, and rate effects are also mentioned. 

In the process of measuring the rate of Au diffusion in dilute lead (gold) alloys, 
it became necessary to find an inexpensive method of determining the amount of Au 
in the alloy_ One cmnot assume the concentrations to be the amount placed in the 
melt because of segregation as the solidification zone moves across the specimen to 

form a single crystal by the Bridgman technique. Because of the possible non-uniform 
concentration, it is necessa ry to measure the concentration at several points along the 
crystal making the expense of activation analysis prohibitive. 

The nature of the melting curve of a pure material is considerably a!tered as 

foreign atoms are added to the material. This change can be harnessed to give a 
quantitative measure of the impurity concentration. On= can focus on the shift of the 
liquidous line with concentration or on the change in the shape of the melting signal 

itself. For very dilute alloys, the melting temperature shifts are small, and the precision 
with which one can determine the actual melting temperature is not good enough for 

accurate determination. Thus we took the later approach. We briefly present the basic 
theory and its assumptions followed by an analysis of the use of differential scanning 
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calorimetry in makinS these measurements. Finally, we will present our results and 

discuss advantages and limitations of this technique. 
Differential scanning calorimetry (DSC) has been used in the past to determine 

impurity concentrations . I-’ Marti’ gives a review of &he literature on the DSC 
method for purity determination. All these mmurements were based on a linear 

relation between the temperature and the rcciprocai of the fraction of the sample 

molten. 7. 

where T,, is the meltins temperature of the pure solvent, R the molar z-as constant, 

.r2 the concentration of the solute, and AH, the heat of fusion of the pure solvent. 

These earlier experimenters observed a strong effect of scan rate on their calculated 
impurity concentrations. They also noted that T(lbi) was not linear except for very 
pure samples. The rate dependence was assumed to be caused by inability ofthesample 
to attain equilibrium at the faster scan rates. D&co1 et a1.3 assumed the non-linearity 
of T(lk;) was due to a portion of the meItin_e peak area being missed before the s&ml 

departed measurably from the baseline. They thus proposed a “linearization” proce- 
dure but then found their calculated impurity concentrations to depend stronaJy 
upon the rarge of 1;~ used. 

We do not use eqn (I) but derive a relation between Tand Ii7 that is not linear. 
The impurity concentrations will be shown to have much less rate dependence and 
will be independent of the range of l/y used in the analysis. 

THEORY 

In the limit of dilute solutions, the lowering of the melting point is given by6 

dT,‘dx, = - RT=;AH, (3 

where .r, is the mo!e fraction of saturated solute in the liquid phase at temperature T 
and dHr is as defined above. From eqn (2), we see that the lowering of the melting 

point depends only upon the solute concentration and not upon the nature of the 

solute, at least for solutes that do not dissociate. This equation assumes that the solute 
is insoluble in the solid phase. Lewis and Randall’ have extended eqn (2) to include a 
system with a finity solubility in the solid phase. 

dq-dr, = (A- - l)RT=/AH, (3) 

where XT is the distribution coeficient, or the ratio of the solubility in the solid to that 
in the liquid phase at a given temperature. From the temperature dependence of k, 
it is seen that, over a small range of temperature near T,, k is constants. The constancy 
of k for dilute solutions is known as Nernst’s law’. Integration of eqn (3) yields 

T- To = RT,T.r,(k - I)/AH, (4) 



Using the law of levers between the liquidous and solidous for an alloy with 

solute mole fraction x2, one finds9 

(3 

where 7 is the fraction molten at temperature T_ Substitution of (33 into (4) yields, 
after rearranging 

T = To i KT& - (II i h-)7-i-/ (6) 

In the above q = RT,r2/AHr and K G kj[i - k)_ L.ettin_e _r = lb_ we have an expre 
sion to which we can fit the data by linear least squares techniques_ 

T = A i- B_r + C7-x (7) 

withA =T,,B= KTO,andC= -(q i h-)_ Note that eqn (7) is not a linear relation 
bekveen T and Ih as was rhe former expression, _q p n (I), even in the case of no solid 

solubility- 

AKALYSIS AND MPERIHE?iTAL PROCEDURE 

We shall briefly review how T and 7 are obtained from the DSC signal. in each 
of the matched pans of the DSC are placed identical aluminum containers, one of 

which contains the lead sample. The output signal from the DSC is the difference in 
heat fiow supplied to the two pans as the pan temperatures are swept together at a 

constant rate, I& In dynamic therma! measurements such as these, thermal lag between 
the aluminum containers and the pans is included through Newton-s Law which is 

the thermal equivalent of Ohm’s I.Aw’~. 

Tp - T = Ro(tj + Coib) (9 

Here TP is the pan temperature, T the sample temperature, Q the DSC signal above 
the instrumental baseline (see Fi_g. l), Co the specific heat of the sample and its con- 
tainer, and R. the thermal resistance to heat flow from the pan to the container_ By 
conservation of ener=g during the process of melting the sample, we have 

4, = ii i CoTand o1 = (Co - CJTP 

where 4, is the power dissipated i:l the pan containing the sample and Or is that in 
the other pan_ h is the rate at which heat is used in melting the sampIe, and C, is the 
specific heat of the sample. In the baseline resion 4, - q2 = C,ib, because i- = 2$ 
and h = O_ The signal above the instrumental baseline during melting is 

fjE QI - qz - CSTP = ii i- C&i-- FP) (10) 

The DSC melting signal for a pure sampIe as a function of time should appear 
as shown in Fig_ la. Melting begins at point B- During melting F = 0, and the signal 
rises at a constant slope 4 = T&U?0 which is obtained by differentiating eqn (8) while 
remembering that pP and T are constant_ At point C melting is complete- and the 
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Fig 1. DSC signaI, 4(r). vs_ time while sweeping temperature at a constant rate TP for (a) ideaI 
purr umpk. and (b) impure sampk. R., is tk thermal rcsistana between tk sample container and 
tk sampIe pan, CO the spzcific hut of the sample and its container, and rm the time at which @c 
saznpic txzs compktd mdting 7, is ~hc pan tanpuature, 7 the sample temperature, and TI and Tr 
the initial and final tcmpmturcs used in fitting the instrumental bascIinc_ 

si_enal decays with 3 time constant r0 = &C’ as Tcatches up with TP_ This follows 
directly from differentiating eqn (S) in this region and substituting from eqn (IO) for 
T- TPwwi = 0. Thus, in principle, one could determine &, and T, from the rising 
sIope and the decay constant of the melting curve of a pure material. 

Figure Ib shows a DSC melting curve for an impure sample. The instrumental 
baseline is assumed to be strai@t, but not neeess& iy horizontal. It is determined by 
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a Ieast-squares fit to a section of the sign&i immediately following Ti and another 
section following Tr_ The instrumental baseIine is subtracted off the data to give the 
values of Q(f)_ q(r) = &g(‘(r)dt is also calculated for each point From eqn (8), the 
sample temperature is 

T(I) = 7-i + ii’ - &j(r) - T& (11) 

The latent heat L = q&), which is tbe total area in the me!ting signal above the 
instrumental baseline”. At time r, the fraction molten is the area ABCDFA divided 
by the latent heat. The fraction moiten at time I is 

where r,,tj(r) is the area ABEF since AB = C02$ and @(r)/BE = iblR,, the siope of 
line BD_ 

Equations (11) and (12) give T and I!i, from the data provided we know RO 
and zo_ For the pure sample, these constants are easily determined, but for the impure 
melting curve, the analysis is not as straightforward. It has been suggested that one 
determine R. from a separate measurement on a pure sample at the same heating 
rate and sensitivity_ However, we found this unsatisfactory for our purposes. Firstly, 
because one can accurately measure very pure samples only at a very slow rate and not 
at the rate used for more impure samples, and secondly, it is difficult to exchange 
samples in the DSC without altering the thermal flow slightly. However, we can 
determine z. from the data. L.et t, be the time at which 7 = I_ From eqn (12) 

70 = [L - s(cJll4(LJ (13) 

where zm is obtained from the position of the melting -peak. For a given value of R,, 
we calculate T(Z) and IbAr) for several points in the melting region_ These are St to 
eqn (7) by linear least squares techniques giving values for A, B, C. and x2 = Xr 
[T(r) - A - Bbi(~) - Cr(l)/;<r)] ‘_ All points with I _ 1 I I/T I 50 are used in the 

fit_ R,, is then varied until the value of ~5’ is minimized, and thus the ‘best” A, S, and 
C are determined from which To, k, and x2 are calculated. The data and final iit are 
plotted as in Fig. 3. 

We also determine the uncertainty in _r, due to the scatter of the data from the 
theoretical expression. In the process of vaqin g R,, we calculate a range of R. 
over which x2 is not significantly altered, Go,, and a numerical value for d_uJdR,_ 
Then 

We wish to emphasize, however, that this does not completely include the uncertainty 
due to the determination of fm and the uncertainty due to errors in the baseline deter- 
mination- 

The samples were made from 99.9999% pure Pb with small additions of Ag, 

Au, Pt, or Pd_ They were single microtome slices of 20 jm~ thickness and approximately 
2 mg mass. They were contained io standard flat aluminum capsules supplied by 
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Perkin-Elmer. A slow steady flow of pure N, ,W through the head was provided on 
every run, and the heads were cooled with s heat sink kept at a constant temperature 
of 9_7%_ Temperatures were increased through the melting region at the constant 
rate ?,, which was sekcted in a range from O-32 deg min- ’ to 20 deg mm-‘. 

The data were cohected and stored by au HP 9810 calculator and analyzed .as 
discussed above with the same calculator. Inputs to the calculator were sample me, 

Ti, T,, i$, sensitivity, and a temperature at which the first data point is taken. The 
calculator was manuaJIy started at Tj_ The DSC signal was sampled four times per 
second thereafter and the integared heat caiculated. PeriodicaJIy, after a selected 
number of such steps, a point was chosen to use in the fit_ A maximum of only 39 
such data points could be stored in addition to a point at rm. 

RESULTS 

The basic data is the melting curve. In Fi,e. 2, we display curves of DSC signal 
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TABLE 1 

x-1 tPpm) 
DSC 147 & 18 1930 2 160 14.5 5 04 
Act, anal. 143 2970 179 

k t-h 24 t 1 15 &2 15 O-3 5 
Ro <xc K nmaP) 0.42 7&4 OTZ 
=o (=d 5.7 5.2 2s 

L w r’) 431 294 5.33 

-__--__ __--___ --- -- 

versus pan temperature for three lead samples. The effect of impurities in the lead 
on the shape of the melting curve is obvious- After analyzing these curves, the data 

wet-e graphed as sample temperatures versus the reciprocal of the fraction molten as 
shown in Fig 3. Again, one can immediately see the effect of impurity concentration 
on these cu~yes. The lines indicate the best fit of eqn (7) to the data. The intercept at 
I/‘1 = 0 is the melting temperature of pure Pb. The curves cross 1;~ = 1 at the melting 

temperature of the alloy. The initial slope at 11-1 = 0 gives the solute concentration, 
and the distribution coefficient is related to the curvature. 

The value of R,,, the thermal resistance between the pan and the sample, 
range9 between O-20 and 025 (set K meal- ‘) for samples containing less than 300 

ppm_ Above this, the vaiue of R,, increased with concentration to about 0.5 for 
900 ppm impurity concentration and became very large if the concentration exceeded 

the solid saturation solubility at the eutectic temperature. r. = Co& varied with the 
sweep rate as shown in Fig_ 4- This is likely due to the flow of N2 gas which had to be 

heated and thus contributed to the heat capacity_ 

Shown in Fig_ 5 is the effizct of sweep rate on the calculated value of x, for both 

Au and Ag impurities in Pb_ It is observed that there is little effect of sweep rate on the 

caIculated Au concentration for 0.5 5 & 5 5 deg min-‘. The Ag measurement 

does show rate effects for fV > I deg mine’_ The measurements at O-3 and O-6 deg 

min’ i are mysterious but may not relate to a physical property of the sample. 

Three samples of dilute Pb(Au) alloys were prepared and sent to General 
Activation Analysis, Inc. for activation analysis of the concentration of Au in each. 
A microtome slice of each of these was measured by the DSC melting technique. The 

results are shown in TabIe I. A upure” lead sample gives an impurity concentration 

of 2 f I ppm which is consistent with its being 99.9999% pure. 

DlSCUSlON 

This method of measuring concentrations of metallic impuuities in neariy pure 

lead- is reiativeiy rapid, reproducible, and accurate for conantrations-in the range 
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from a few ppm to about 1000 ppm, or the maximum solid solubility, whichever is 

lowest. The samples need bc oniy 2 mg in size making possible the measurement of 
spatial variation in the concentration. This technique does not distin@sh one 

impurity from another and may not give an accurate measure of total impurity 
concentrations if there at-e many different impurity atoms involved. The minimum 
measurable concentration is limited by the sensitivity of this method in detectins a 
chanse in the shape of the mehing curve. but the upper limit is set by breakdown of 
the theory, if the concentration is above the maximum solubility at the eutectic or by 
inability to obtain a linear baseline over the lar_ge range of temperatures involved in the 
melting curve. The calibration sample No. 2 contained more Au than is soIuble at the 
eutectic (1160 ppm); thus we could not measure it by this technique_ In order to check 
the reliabiiity of higher concentration measurements, we dissolved 852 ppm Au in a 
Pb rod and measured the concentration at some 8 points along the rod to zet an 
avera_ee concentration of 565 & 30 ppm in good a_geement with the amount introduced_ 

The values of the distribution coefficient k are all qualitativeiy correct, for they 
are very similar to the distribution coefficient at the eutcctic One of the principal 
uncertainties in this interpretation of the melting signal is the large calculated variation 
of k with ..u,. Thurmond and Struthers’ show k to vary monotonicMy with tempera- 
ture between the eutectic and the meltinS point_ In our case, the value of k as seen 
in Table 1 seems to approach zero at To and to increase too rapidly as Tis lowered, 
to extrapolate IO the correct result at the eutcctic. 

The effects of sweep rate upon the calculated _Q probably reflects equilibrium 
effects_ As the alloy melts, the concentration in the remaining solid should decrease, 
because the soiubility of the solute in the liquid is _mter than that in the solid. in 

order to maintain equilibrium, the solute must diffuse out of the solid. The rate that 
the new equilibrium can be attained is dependent upon the diffusion constant of the 
solute in the Pb_ We have made DSC measurements for dilute Pt, Pd, Au, and Ag 
aiioys of Pb. For Pt, Au, and Pd, the diffusion constant is in the order of IO6 cm’ 
set- I. and these impurities a11 _eive a value of x2 which is constant for Fr, g 5 deg 
min- r . The diffusion rate of Ag, on the other hand, is an order of magnitude slower, 
and thus the values of x2 should be constant for a sweep rate I/,.;10 of the 5 des min’ r 
found above_ We cannot check this prediction directly because of what appears to be 
instrumentai problems at the two lowest sweep rates_ As is observed in Fig. 5, there is 

a sudden increase in x2 at these two slowest rates. We believe they are instrumental, 
bccausc the magnitude of the sudden increase depends upon the particular heads used 
with the DSC, and we can think of no sample-related explanation for this effect, 
Values of x1 measured for Pb(As) alloys at l-25 deg min- ’ do a-gee very well with 

the wei_ehcd amount of AS placed in Pb samples and quenched from the melt to avoid 
segregation problems_ 

It is concluded that the ‘linearization” procedure is not the correct way to 
anaiyze melting curves for impurity measurements_ The procedure here not only 
&es results that fit the theoretical expression very well, but the results for x2 do not 
depend upon the range of l/-/ used. This range has to be arbitrarily chosen in the 
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“linearizationT’ approach, and x2 varies by more than an crder of magnitude for 
different regions of I/y between 2 and 50. We chose the entire ran_ee 1-i .c I/-/ < 50. 
We have also taken successful measurements with I.1 < lb] < 100. Therefore, we 
do not need a set of standards to select a range of lb] as in the “linearization” approach. 

If we divide r0 in Fq. 4 by R,, we get the specific heat versus I&. This specific 
heat originates from the heat capacity of the lead and its ahrminum container and of 
the N, was that flows through the heads of the DSC. The latter term should appear 
as C&r’, where C, is the specific heat of the gas with a flow rate Rf- This explains 
the Ihex dependence of s, on I/ib. The intercept at I/ib = 0 is C&,. For these 
samples R, = 0.3 set K meal- I, so we get C, = 5.8 meal deg- ‘. We compare this 

to 5.6 meal deg- t for the 26.2 mg of Xl and 0.1 meal deg- * for the 3 mg of Pb and 
find the aseement very good. We thus conclude that our method of determining 7, 

and Rb from the melting cur--e is justified. 

We wish to thank Dr. J. Bevan Ott of the Brigham Young Unirersity Chemistry 
Department for letting us use his differential scanning calorimeter for this research. 
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