Note -__.- _-_ ___ --

Heat capacities and compressibilities of deuterium oxide-water mixtures at 298.15 **K'**

OSAMU KIYOHARA**, PATRICK J. D'ARCY AND GEORGE C. BENSON Division of Chemistry, National Research Council of Canada, Ottawa, K1A OR6 (Canada) (Received 4 October 1977)

In a previous study' of the thermodynamic properties of deuterium oxide (DzO) + water (H,O) mixtures, we found that the isentropic compressibilities at 298-15 K exhibit smaii negative deviations from ideality. As an extension of that investigation, we have measured the volumetric heat capacities of $D_2O + H_2O$ at **298.15 K over the Whole mole fraction range_ These results, combined with data from ;he literature, were used to calculate isobaric and isochoric heat capacities, and isothermal compressibilities**

_MATERiALS AED ESPERIYEXTAL TECHhlQUE

Two different samples of D₂O (Merck, Sharp and Dohme reagent with specified minimum isotopic purity of 99.7 atom $\%$ D) were used. Their densities, measured at 298.15 K with an Anton Paar densimeter², were 1104.20 and 1104.44 kg m^{-3} . Assuming the only impurity to be $H₂O$ and adopting a value of 1104.449 kg m⁻³ for the density of pure $D₂O$ at 298.15 K (ref. 3), the mole fractions of $D₂O$ in the two samples were estimated to be 0.99⁷/7 and 0.9990, respectively. Mixtures were prepared by mass, using deionized distilled F_2O . A correction for the H_2O content of the D_2O **was made in calculating the mole fraction of D,O in each mixture_ The error of the** mole fractions is estimated to be less than 2×10^{-4} .

Differences of volumetric heat capacity C_p/V were measured in a Picker flow calorimeter⁴. Details of this equipment and of the operating procedure have already **been described'- 6. Since the volumetric heat capacities** of **the present mixtures are** larger than those of the binary organic liquid mixtures studied previously⁶, the flow rate was decreased from $0.01 \text{ cm}^3 \text{ sec}^{-1}$ to $0.007 \text{ cm}^3 \text{ sec}^{-1}$. The reference liquid was **Hz0 in all of the measurements (single reference procedure). The precision of the**

Issued as NRCC No. 16892.

National Research Council of Canada Research Associate.

determination of the difference of volumetric heat capacities **is** about O-3 % up to the limit of sensitivity of the calorimeter (5×10^{-5} J K⁻¹ cm⁻³).

FESULTS ASD DlSCCiSSION

The measurements of volumetric heat capacity at 298.15 K are summarized in Table 1, where x_1 indicates the mole fraction of D_2O in the mixture. Each entry for $d(C_p/V)$ is the average of several determinations of the difference between the volumetric heat capacity of the mixture and that of pure H_2O $\lceil 4.16725 \rceil K^{-1}$ cm⁻³ (ref. 7)]. The molar heat capacity C_p of each mixture was obtained from these results using the molar volume V calculated from the densities of the pure components and the molar excess volume V^E of the mixture⁸.

To obtain the molar heat capacity of pure D_2O , the results for C_0 were extrapolated to $x_i = 1$ by means of least squares polynomials. This yielded a value of 84.682 J K⁻¹ mol⁻¹ which can be compared with the values 82.60 (ref. 9), 84.25 (ref. 10) and 84.38 (ref. 11) reported in the literature. Molar excess heat capacities C_n^E are given in the last column of Table 1 and are presented graphically in Fig. 1(a). The values of C_p^E are small and positive over the whole mole fraction range, and can be represented by rhe equation

$$
C_{\rm p}^{\rm E} \left({\rm J\; K^{-1} \; mol^{-1}} \right) = 0.082 \; x_1 \; (1 \; - \; x_1) \tag{1}
$$

TABLE I

HEAT CAPACITIES OF DzO(1) + HzO(2) MIXTURES AT 298-15 K

 \cdot From ref. 7.

b Extrapolated value.

Fig. 1. Excess heat capacities and excess compressibilities of D_zO(1) + H₂O(2) mixtures at 298.15 K. (a) \bigcirc , Present results for C_p^E ; ——, least squares representation of C_p^E by eqn. (1); ---, curve calculated for C_r^E. (b) C, Results for κ_S ^E from ref. 1; -----, least squares representation of κ_S ^E by eqn. (4); ---, curve calculated for $\kappa_T E$.

with a standard deviation $\sigma(C_p^E) = 5 \times 10^{-3}$ J K⁻¹ mol⁻¹.

Isothermal compressibilities κ_T were calculated from the isentropic compressibilities $\kappa_{\rm s}$ reported previously¹ using the present results for $C_{\rm p}$ and the thermodynamic relation

$$
\kappa_{\rm T} = \kappa_{\rm S} + \alpha^2 V T / C_{\rm p} \tag{2}
$$

where α is the thermal expansivity and T the temperature. Values of α for the mixtures were estimated from the values of α for the pure components³ and the variation of V^E with temperature⁸. Heat capacities at constant volume C_r were then obtained from **the equation**

$$
C_{\mathbf{v}} = C_{\mathbf{p}} \kappa_{\mathbf{S}} / \kappa_{\mathbf{T}} \tag{3}
$$

The results for the excess heat capacity at constant volume C_v^E and the excess isothermal compressibility $\kappa_{\overline{1}}^E$ are shown as broken curves in Fig. 1(a) and (b), respectively. Our previous results for κ_s^E along with their least squares representation

$$
\kappa_{5}^{E}(TPa^{-1}) = x_{1}(1 - x_{1})[-0.068 - 0.145(1 - 2x_{1}) - 0.108(1 - 2x_{1})^{2}]
$$

\n
$$
\sigma(\kappa_{5}^{E}) = 4 \times 10^{-3} TPa^{-1}
$$
\n(4)

are included in Fig. 1(b) for comparison. It can be seen from Fig. 1 that C_r^E is more positive than C_p^E and that κ_T^E is more negative than κ_S^E .

Although there have been many investigations of H₂O and D₂O in the liquid **state, a detailed explanation of the differences of their physical properties is stiI1 lacking It is generally considered that D,O is more structured than H,O at the same** temperature¹². The present deviations of $D_2O \div H_2O$ mixtures from ideality are **consistent with the promotion of structure by HDO in the mixtures_**

REFERENCES

- **I** O- **Kiyohxa, C. J_ Halpin znd G. C- Benson. Cam 3. C&m.. 55 (1977) 35-M.**
- 2 *O- Kiydura* **and G. C- Benson. Can.** *J. Chem., 51 (1973) 2489.*
- 3 G. S. Kell, *J. Chem. Eng. Data*, 12 (1967) 66.
- 4 P. Picker, P.-A. Leduc, P. R. Philip and *J. E. Desnoyers, J. Chem. Thermodyn.*, 3 (1971) 631.
- 5 J.-L. Fortier, G. C. Benson and P. Picker, J. Chem. Thermodyn., 8 (1976) 289.
- 6 J.-L. Fortier and G. C. Benson, *J. Chem. Thermodyn.*, 8 (1976) 411.
- 7 **G. S.** Kcll. J. CYrem fig_ *Dara. 20* **(1975) 97_**
- 8 **G. A_ Bottombzy and R L_ Scott. Ausz.** *J_ CArm.. 29 (1976) 427_*
- **9 E. A. Long and J. D. Kemp,** *J. Am. Chem. Soc.***, 58 (1936) 1829.**
- **IO A. H. Cockcft and A. Faguson,** *Philus. _Wag_, 29 (1940) 185.*
- **II** *A.* **Elrckcn and** 31. **Eigm. 2.** *Ekkrrochrm.. 55* **(1951) 343.**
- 12 G. Némethy and H. A. Scheraga, *J. Chem. Phys.*, 41 (1964) 680.