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ABSTRACT 

A method of calculating lattice energies is developed, which reproduces directly 
the observed pressure-volume curve of some simple ionic solids. The results in general 
are close to the experimental vaIues, and show deviations usually between 5 and 
10 kJ mole- I. The calculated values are not systematically too high or too low. Some 
estimates are made of the effect of errors in the P-V curve on the calculated lattice 
energies. 

INTRODUCTION 

In earlier papers’, the present author attempted to develop equations which 
would reproduce the observed variation of compressibility of a simple ionic crystal 
with pressure. The compressibility was fitted to an empirical equation 

/3 = PO + PIP + P2P2 
where p is the compressibility at a pressure P. The coefficients fi,,, p1 and p2 were 
obtained by the method of least squares. Various equations, relating the crystal 
energy to distance between neighbouring ions, were investigated. Of these, the most 

successful was 

134 EC- B + _!!- + ?!_ 
I’ I r2 

(1) 

where, M = NAe2Z,Z, A = Madelung constant, Z,,Z_ = charges on cations and 
anions, C’ = van der Waal’s constant, i’ = distance between neighbours. The 
quantities B, G, H and c are adjustable constants. If G and H are omitted, eqn. (I), 
of course, reduces to the Born-Mayer equation ‘_ The Born-Mayer equation, and 
the earlier Born equation, contain two adjustable constants, which are usually 
evaluated from the equilibrium distance between ions, and the compressibility of the 
crystal at a fairly low pressure. In effect this method adjusts the constants to give the 
correct values of dE/dr and d2E/dr2 at Y = P,, the equilibrium distance. The method 
used earlier in applying eqn. (1) was to adjust the constants so that in addition 
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d3E/dr3 and d3E/dr4 at I’ = I’, agreed with experiment. This allows an equation 
relating B, G, H and 0 to /lo, fii, lj2 and rc to be developed, and solved to give values 
of the adjustable constants. Once these constants are known, the lattice energy, U, 
is easily calculated. This procedure gave, in general, larger absolute values for the 
lattice energy than those calculated from simpler equations such as the Born-Mayer 
equatio;;. These larger values were usually in better agreement with experimental 
values, obtained indirectly from a thermodynamic cycle (the “Born-Haber” cycle). 

This method rests on the assumption that the best method of fittins the con- 
stants is by means of various &‘E/dr“ at r = r,. This is not the only possible approach, 
and the present paper treats the data somewhat differently, as follows. The primary 
data in measurements of compressibilities are values of A V/V, at various pressures, 
where A V is the change in volume of the sample at some higher pressure from its 
voIume, V,, at zero (or very low) pressure. Hence the constants in eqn. (I) were 
adjusted to give the experimental curve for A V/ VO plotted against P. The details of the 
method will be described in the next section. The main purpose of this paper is to 
discover how well this method agrees with results from the earlier treatments, and 
with experiment. Similar calculations were also made using an equation like eqn. (I), 
but with fewer constants, and a second object of this paper is to explore the relation 
between the number of constants and the calculated lattice energies. In addition some 
values of P for various A V/V, were calculated, using the constants obtained from the 

earlier paper*, and these can also be compared with experiments. 
It became apparent in the course of these calculations that the constants in 

eqn. (I) and, to a considerably lesser extent, the lattice energies were very sensitive 
to the exact values of A V/ Ve that were used. Values of A V/ VO are, of course, subject to 
experimental error, and their measurement is not easy. Consequently the effect of 

possible errors in A V/V, on the calculated results, particularly lattice energies, was 
also investigated to some extent. 

In general, the conclusion cannot be avoided that there is some degree of 
arbitrariness in Iattice energy calculations. This arises, in part, because the equation 
relating E to r is in effect extrapolated from distances equal to the equilibrium 
distance, or somewhat less out to I’ = co. This is not quite as bad as it sounds, be- 
cause for distances a few (perhaps 3-4) times the equilibrium distance or larger, the 
only term in E of any importance is the electrostatic one, and this can presumably 
be calculated fairIy accurately. Some indication of the extent of this arbitrariness 
will be seen below. 

TREATMENT OF DATA 

Equation (1) above contains four constants (it is assumed that C’ is known, 
as values appear in the literature3), and in theory it should be possible to take the 
values of A V/V0 for four different pressures, substitute in eqn. (l), and solve the 
resulting four equations for B, G, H and CT. In practice this approach runs into two 
difficuitics: firstly, the four pressures must be selected somewhat arbitrariIy; secondly, 
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the resulting equations are not easy to solve explicitly, as they contain a polynomial 
multiplied by an expcnential term. 

A rather different procedure was therefore adopted. Three values of the pressure 
were selected, and a guessed value of the constant G. The resulting three equations 
were solved for B, G, and H. The pressures were then calculated for the other ob- 
served values of d V/V,: and the deviations of these from the observed pressure were 
also obtained. The average value of these deviations was calculated, with the use of 
all the observed values of d V/V,, except those for the three initially selected pressures 
for which the deviation is necessarily zero. The whole calculation was repeated with 
various values of G, and it was found, as might be expected, that the average deviation 
went through a minimum for some value of G. This was taken to be the best value of G, 
and as the relevant B, G and H are now known, the lattice energy could be easily 
calculated_ 

This procedure has the advantage that it makes use of all the data. It still 
suffers from some arbitrariness in the selection of the three pressures_ In practice 
the lower and highest pressures were used, and an intermediate one with d V/V, 

about half the largest value. It is also arbitrary whether the average deviation in the 
calculated pressure, or the average fractional deviation is minimised. It was found, 
fortunately, that this did not make much difference. The same applied to the use of 
the root mean square deviation. The results reported below come from minimum 

absolute deviations. 
Equation (1) above leads to the followin g equation for the pressure 

dE -- = 
di 

= 3cAy (z-&/j?, - P) (2) 

where C is a number such that the volume of one mole of :he compound is CNr3. 
q, and /JO are, respectively, the coefficient of thermal expansion, and the compressibility, 

TABLE 1 

CONSTANTS, LATTICE ENERGIES, AND AVERAGE DEVIATIONS IN PRESSURE, CALCULATED FRO&I EQNS, (I) 

AND (2) 

Cow ri B 
portrd 

G H Laltice A seragc 
errerg_I deviatiom it1 P 

(atrn) 

NaCl 3.00 -1.165 x 10; 2.065 :/ 10” -1.777 x 10” - 777.0 372 
NaBr 5.S2 6.604 x 10’:’ -3.240 :c 10“’ 4.042 s lo’-’ -754.5 196 
Nd 4.52 2.351 x 10” -;;.;;; ; m:’ 14.652 :m: 10” -692.9 90 
CSCI 5.78 1.710 x IO’” 

ii 
5 

-13:014 
15.344 x 10’5 -663.5 97 

CsBr 5.10 2.211 x lo’-’ 10’4 19.442 x lo’.’ - 637.5 265 
CSI 4.40 3.504 x 101” -21.156 >: lo= 32.656 x 10’” -598.3 ss 
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both at low pressure. The term TccO//IO allows for the fact that the crystal is not at 
absolute zero, and has expanded somewhat between 0 K and the temperature of the 
compressibility measurements (20°C for the data used). 

Equation (2) was used either to obtain linear equations in B, G and H, if Y 

and P are known and a value of 0 is assumed; or to calculate P at various r after all 
the constants had been evaluated. 

The results for eqn. (1) are given in Table 1. The constants were fixed by the 
distances observed at pressures of 0,40 000, and 100 000 atm. Table 1 gives the values 
of B, G, and H for the best value of G. The average deviations of calculated from 
observed pressures are also given. These are for the pressures other than 0, 40 000 
and 100 000 atm. at which measurements were made: these in general were at mul- 
tiples of 10 000 atm. up to 90 000. The calculated lattice energies in Table 1 are in 
kJ mole-‘. The units of Q are A-‘, and B, G and H are the values if ener,T is in 
J mole-’ and distance in &L 

Before the results in Table 1 are considered, attention should be drawn to 
Table 2, which shows how the average deviations varied with different values of 
6. To comment on Table 2, we may note that the calculated pressure for any given 
interionic distance always drifted steadily as the value of c was increased. This drift 
might be either up or down, and, of course, the calculated and observed pressures 
did not all coincide at the same value of 0. However, the net effect was that the average 
deviation went through a minimum at some value of B. When the observed and 
calculated pressures coincide at similar values of 0, the average deviations went 
through a relatively sharp minimum, and the lowest average deviation was relatively 
small. 

If we look at Table 1, it is hard to see any pattern in the values of U. This may 
arise in part from experimental errors in d V/V,. The observed values of these quanti- 
ties run from about 0.05 (at IO4 atm) to nearly 0.3 (at 10’ atm). They are reported 

TABLE 2 

AVERAGE DEVIATIONS IN CALCULATED PRESSURE FOR DIFFERENT VALUES OF CT 

h’a CI NaBI Nat 

D Dev. G Dev. cr 
(A-l) (am) (ii-l) (arm) 

CSCl CsBi Cd 

2.6 374s 4.0 557.5 
2.9 372.6 5.0 315.2 
3.0 372.4 5.5 224.6 
3.1 372.6 5.7 199.2 
3.2 374.5 5.8 197.6 

5.91 196.4 
5.82 196.1 
5.83 197.0 
5.9 204.5 

4.0 125.6 5.0 630.0 5.0 297.6 4.0 333.1 
4.4 92.0 5.7 147.8 5.08 271.4 4.3 132.7 
4.48 90.9 5.76 104.8 5.10 265.1 4.38 92.7 
4.50 90.6 5.77 98.5 5.11 266.2 4.40 8X.1 
4.52 90.3 5.78 97.4 5.12 267.4 4.42 89.5 
4.54 91.3 5.79 98.4 5.2 277.4 4.5 98.0 
4.58 105.0 5.8 99.4 5.4 429.9 4.6 155.0 
4.6 112.1 5.9 124.6 
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TABLE 3 

EFFECT OF POSSIBLE ERRORS IN d v/ V,J FOR NaBI. 

--dV/V,fb,_ P = 4 x IO” G A rer-age Lattice 
deviation in P (arm) energy (kJ) 

0.130 5.89 517 -756.2 
0.131 5.50 281 -751 .v 

0.132 5.82 196 - 754.5 
0.133 5.01 355 -745.3 
0.134 4.10 557 -732.0 

to three decimal places, and a change of 0.001 in d V/V0 changed the calculated 
pressures by about 250 atm at low pressures, and by about 900 atm at high pressures. 
Consequently a small error in d V/V, could lead to an appreciable change in the 
average deviation, and to a lesser extent in the best value of G’. 

This is illustrated by some calculations for sodium bromide in Table 3. The 
reported value of A V/V, is -0.132 at 4 x IO5 atm. If slightly different values are 
used in the calculations, the best values of G, the average deviations, and the lattice 
energies are as shown. Note that G does not vary in a monotonic manner, and also 
that the reported d V/V, does in fact give the lowest average deviation. The calculated 
lattice energy changes quite considerably for the small changes in d V/V,. 

Another general trend is that the larger the values of G, the larger is the absolute 

value for the lattice energy, as can be seen, for example, from these calculated results 
for sodium bromide 

G (A-‘) 4.0 5.0 5.5 

U (kJ mole-‘) - 733.7 - 745.9 -751.3 

The change in U is not large, but it is appreciable. 

6.0 

- 756.3 

It seems necessary to conclude that relatively small errors in d V/V, could lead 
to moderate sized errors (perhaps 5-10 kJ mole-l) in the lattice energy. In spite 
of this in every case the calculated curve of LI V/V, against P closely reproduced the 

experimental points. This is true even of sodium chloride, which gave the poorest 
agreement. 

In the earlier paper’ on this type of calculation, the variation of compressibility 
with pressure was allowed for, as mentioned above, by fitting d3E/dr3 and d”E/dr* 
at Y = Y,. This gives values for B, G, Hand 6, and so allows pressures to be calculated 
at various r. It was found that the pressures calculated in this way deviated quite 
seriously from the observed pressures, and it is evident that the earlier method is 
not nearly as satisfactory in reproducing the P-V curve. 

The types of calculation involved in eqns. (1) and (2) were also applied to 

similar equations, but with fewer constants: firstly an equation containing only B, 
G and 0; and secondly one containing only B and 0, which is in fact the Born-Mayer 
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TABLE 4 

EFFECT OF NUMBER OF ADJUSTABLE CONSTANTS ON LAl-i-ICE ENERGIES 

G 

4 3 2 

Average deviation Absolrrte lattice energies 

4 3 2 4 3 2 ObS. 

NaCl 3.00 3.26 3.20 372 327 353 777.0 777.3 776.5 783.5 
NaBr 5.82 2.55 3.16 196 360 1302 754.5 740.1 739.4 757.5 
NaI 4.52 2.57 2.51 90 667 452 692.9 682.0 683.1 699.5 
CSCI 5.70 2.79 3.05 97 644 1451 663.8 645.6 645.0 655.5 
CsBr 5.10 3.30 2.78 265 607 99s 637.5 624.4 618.8 632 
CSI 4.40 2.98 2.69 85 473 619 598.3 588.5 555.7 598.5 

equation. The results are collected in Table 4. The columns indicate at the top the 
number of adjustable constants; the column headed “4” repeats part of Table 1, 
which is included for easy comparison. Also in the last column, observed lattice 
energies are given (to the nearest 0.5 kJ), obtained in effect from a Born-Haber 
cycle. These experimental numbers differ slightly from those in ref. 1, being based on 
slightly revised data (mostly available in ref. 4). 

The results in Table 4 show, as might be expected , generally lower deviations 
with more adjustable constants. However, there are some slight exceptions to this, 
which arise because the calculated pressure is constrained to agree with the observed 
pressure at more points in the equations with more constants. This may not reproduce 
the other pressures quite as well, probably because of some experimental error in 
observed P-V results. 

The last section of Table 4 gives absolute lattice energies in kJ mole- ‘. The 
equation with most constants agrees best with experiment, though the improvement 
is not very great. The agreement with experiment is, however, definitely better than 
with the earlier method of obtaining the adjustable constants (from d3E/dr3, etc.). 

Also by the earlier method all the calculated results were absolutely too large; by 
the newer method some are too large and some too small. At the best the calculated 
results can still differ from experiment by 5-10 kJ. This seems to be the inevitable 
result of tryin g to fit the repulsive energy between ions at short distances to a fairly 
simple formula, and then to extrapolate the equation to an infinite distance. At 
present, also, a gross repulsive energy for the whole crystal is considered without 
taking into account differences between cation-anion, cation-cation,. and anion- 
anion repulsions. However, it is doubtful whether these differences couId be included 
in the calculations without either introducing very many adjustable constants, or 
making fairly extensive assumptions about the relative sizes of the repulsions_ 
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