Thermochimica Acta, 31 (1979) 181–188 © Elsevier Scientific Publishing Company, Amsterdam – Printed in The Netherlands

VAPORIZATION STUDY OF THE SbBr₃ SYSTEM BY THE TORSION– EFFUSION METHOD

D. FERRO, V. PIACENTE AND B. M. NAPPI

Istituto di Chimica Fisica, Università degli Studi di Roma, 00185 Rome (Italy)

(Received 13 June 1978)

ABSTRACT

Vapor pressures of solid antimony tribromide were measured by the torsioneffusion technique. The values obtained can be expressed by the equation

$$\log P(\text{atm}) = (9.3 \pm 1.3) - (4.4 \pm 0.5)/T$$

in the temperature range 324-368 K.

The standard heat of vaporization was derived by second- and third-law treatment of the data and compared with values reported in the literature. The value $\Delta H_{\rm van}^0$ (298 K) = 19.5 ± 0.5 kcal mole⁻¹ was derived.

INTRODUCTION

The vaporization process of antimony halides has been studied by several authors in connection with their utilization in the synthesis of semiconductor compounds^{1, 2}.

In our previous works^{3, 4}, the vapor pressures of the iodide and chloride of this element were measured. For the tribromide, in addition to the early vapor pressure data quoted by Stull⁵, the data reported in the literature have been measured mainly by static methods^{6, 9} and over the liquid phase. In view of the lack of experimental data on the vaporization of the solid phase, and in order to complete the series of the antimony halides, measurements of vapor pressure over SbBr₃ by using the torsion method were performed.

EXPERIMENTAL AND RESULTS

The SbBr₃ was supplied by Cerac/Pure as 99.7% pure (Sb₂O₃ as impurity) and was used without further purification. The vaporization cell was filled in a drybox in order to avoid interaction with the atmosphere. The basis of the method is

well known¹⁰; when the sample is heated at a given temperature, the corresponding vapor pressure is derived by measuring the torsion angle (α) using the relation

$$p=\frac{2K\alpha}{(a_1l_1f_1+a_2l_2f_2)L}$$

where K is the constant of the torsion wire to which the Knudsen cell is suspended, a_1 and a_2 are the areas of the two effusion holes, l_1 and l_2 are the respective distances from the rotation axis, f_1 and f_2 are the corresponding geometrical correction factors, and L is the torsion wire length. The correction factors are derived from the equation¹¹

$$\frac{1}{f} = 0.0147 \left(\frac{L}{r}\right)^2 + 0.3490 \left(\frac{L}{r}\right) + 0.9982$$

where r and L are the radius and the thickness of the effusion hole, respectively. The temperatures were measured by a calibrated chromel-alumel thermocouple inserted in a second cell below the torsion cell.

In this study, different cells and suspension wires were employed; their physical and geometrical constants are reported in Table 1. Some calibration experiments with very pure mercury were performed using the different cells in order to check the existence of thermodynamic equilibrium conditions, the reliability of the constants used and the absence of any substantial error in the temperature measurements. Good agreement between the ΔH_{vap}^0 (298 K) of the mercury derived both by secondand third-law treatments of the vapor pressure data and the value selected by Hultgren et al.¹² can be considered as a successful check.

TABLE 1

CONSTANTS OF THE CELLS EMPLOYED

Cell	Orifice area		Moment arm		Correction factors ¹¹	
	$a_1(cm^2) \times 10^4$	$a_2(cm^2) \times 10^4$	$(\pm 0.0.5)$	5 cm)	$\overline{f_1}$	f_2
A B C	6.8 ± 0.5 6.8 ± 0.5 19.6 ± 0.8	$\begin{array}{c} 6.8 \pm 0.5 \\ 7.1 \pm 0.5 \\ 19.6 \pm 0.8 \end{array}$	0.81 0.815 0.975	0.79 0.86 0.94₅	0.226 0.226 0.268	0.217 0.240 0.314
Torsion file $(L = 35.0)$	ament ± 0.2 cm)	Torsion ((dyne cn	constant n rad ⁻¹)			
Tungsten Tungsten Fiber Ni-J	wire 30 μm diam. wire 50 μm diam. Pt 10% (150 × 50) μ	$\begin{array}{c} 0.352 \pm \\ 2.44 \pm \\ 0.33 \pm \end{array}$	0.04 0.36 0.05			

TABLE 2

T	-log P	$-\Delta H_{298}^{0}$		-log P	$-\Delta H_{298}^{0}$
(K)			(K)		an a
Expt. I: C	ell A. torsion fila	ment: tungsten wire (3	0 μm in diameter)	
337	3.925	19.51	363	3.080	19.59
342	3.681	19.42	363	3.080	19.59
345	3.603	19.46	363	3.090	19.60
345	3.703	19.62	364	2.960	19.44
347	3.524	19.45	364	3.040	19.58
348	3.557	19.55	364	3.080	19.64
350	3.427	19.46	366	3.040	19.68
351	3.399	19.47	366	2.931	19.49
352	3.373	19.48	367	2.922	19.53
352	3.457	19.61	367	2.987	19.64
353	3.348	19.49	368	2.879	19.51
353	3.373	19.53	368	2.755	19.30
353	3.361	19.51	369	2.718	19.29
353	3 402	19.58	369	2.840	19.49
353	3 302	19.47	369	2.840	19.52
255	3 788	19 50	370	2.683	19.28
355	3 361	19.62	371	2.658	19.28
356	3 323	19 61	371	2.748	19 44
356	3.323	19.61	372	2.634	19.28
350	3 256	19.56	372	2.752	19.49
257	2 223	19 51	372	2 702	19.40
258	3 1 8 8	19.50	372	2.762	10 22
358	3 272	19.50	373	2.716	19.22
350	3 1/1	10.48	374	2.710	19.77
350	3 223	19.64	375	2.549	19.40
360	3 072	19 47	375	2.639	19.40
360	3 226	19.67	376	2.052	19 31
360	3 226	19.67	376	2.551	19.51
361	3 147	19 59	376	2 519	19.31
361	3 177	19.64	377	2.01	19.51
361	3 023	19.39	377	2.437	19.15
362	3 001	19.40	378	2.416	19.15
362	3 176	19.61	370	2 371	19.15
362	3 120	19.60	380	2.347	19.12
202	J•14J	17.00	281	2.34	10 17

VAPOUR PRESSURE (Atm) AND THIRD-LAW $\Delta H_{298}^{0}(VAP)$ (KCAL MOLE⁻¹) VALUES OF SbBr₃.

Average: 19.5 \pm 0.1^a

Ern	II. Call C tarrian file	mant tungstan wir	(30 um in diamatan)		
124	11. Cen C, torsion jiiu A 15A	10 60	ε (ου μπι in anameter) 363	3 196	10 71
225	4 055	10.50	363	3.100	19.71
242	2 951	10.74	262	3.091	19.01
245	3.031	19.74	203	3.082	19.59
240	3./J4 2.675	19.70	30/	2.991	19.65
340	3.073	19.74	312	2.754	19.49
343	3.040	19.74	374	2.748	19.56
332	3.524	19.72	375	2.741	19.59
333	3.475	19.09	370	2.725	19.61
333	3.464	19.68	311	2.709	19.62
320	3.392	19.73	379	2.640	19.58
358	3.323	19.72	379	2.539	19.41
360	3.249	19.71	386	2.277	19.22
360	3.263	19.73	391	2.191	19.26
		· · · ·		Δνε	rage 10 6 _ 0 18
				Ave	$1 \text{ age. 17.0} \pm 0.1^{\circ}$
Expt.	III: Cell C. torsion fi	ilament: tungsten wi	ire (50 um in diamete	r)	
338	3.804	19.38	377	2415	10 11
339	3.804	19.44	379	2 398	19.16
348	3,503	19.46	381	2 349	19.16
352	3.327	19.40	385	2.342	10.00
355	3.202	19.36	387	2.22.3	18.05
356	3.151	19.33	389	2.120	18.05
358	3 064	19.29	301	2.000	18.0/
350	3.004	10.20	303	1 947	18 20
362	2 901	19.25	304	1.047	18.07
366	2.501	10.18	304	1.912	18.06
368	2.745	19.10	305	1.900	10.90
369	2.674	19.22	396	1 845	18.82
375	2 443	19.08	399	1 872	18.02
376	2.443	19.12	400	1 809	18 03
					10.22
			in the second second		
				Ave	erage: 19.1 ± 0.1^{a}
				Ave	erage: 19.1 ± 0.1^{a}
Exp.	IV: Cell B, torsion fil	'ament: Ni-Pt (10%) fiber	Ave	erage: 19.1 ± 0.1 ^a
<i>Exp</i> . 339	IV: Cell B, torsion fil 3.889	'ament: Ni-Pt (10% 19.57	5) fiber 365	Ave 2.875	erage: 19.1 ± 0.1^{a} 19.36
<i>Exp.</i> 339 342	IV: Cell B, torsion fil 3.889 3.764	'ament: Ni-Pt (10% 19.57 19.55	5) fiber 365 367	Ave 2.875 2.848	erage: 19.1 ± 0.1 ^a 19.36 19.40
<i>Exp</i> . 339 342 346	IV: Cell B, torsion fil 3.889 3.764 3.668	lament: Ni-Pt (10% 19.57 19.55 19.62	5) fiber 365 367 367	Ave 2.875 2.848 2.986	erage: 19.1 ± 0.1 ^a 19.36 19.40 19.64
<i>Exp.</i> 339 342 346 346	IV: Cell B, torsion fil 3.889 3.764 3.668 3.667	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62	5) fiber 365 367 367 368	Ave 2.875 2.848 2.986 2.844	erage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45
<i>Exp.</i> 339 342 346 346 352	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62	5) fiber 365 367 367 368 368 368	Ave 2.875 2.848 2.986 2.844 2.835	erage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44
<i>Exp</i> . 339 342 346 346 352 352	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.62	5) fiber 365 367 367 368 368 368 368 369	Ave 2.875 2.848 2.986 2.844 2.835 2.798	erage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48
<i>Exp</i> . 339 342 346 346 352 352 353	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463 3.365	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.62 19.52	5) fiber 365 367 367 368 368 368 369 370	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764	trage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42
<i>Exp</i> . 339 342 346 346 352 352 353 355	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463 3.365 3.365 3.366	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.52 19.63	5) fiber 365 367 367 368 368 368 369 370 370	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775	erage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44
<i>Exp.</i> 339 342 346 352 352 353 355 355	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463 3.365 3.366 3.366 3.366	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.63 19.63	5) fiber 365 367 367 368 368 369 370 370 370 370	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753	erage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.42 19.44 19.40
<i>Exp.</i> 339 342 346 352 352 353 355 355 355	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463 3.365 3.366 3.366 3.366 3.365	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.63 19.63 19.63	5) fiber 365 367 367 368 368 369 370 370 370 370 372	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.42 19.44 19.40 19.40 19.44
<i>Exp.</i> 339 342 346 352 352 353 355 355 355 356 357	<i>IV</i> : <i>Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463 3.365 3.366 3.366 3.366 3.365 3.190	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.63 19.63 19.63 19.63 19.45	5) fiber 365 367 368 368 368 369 370 370 370 370 372 373	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44 19.44 19.40 19.44 19.40 19.44 19.39
<i>Exp.</i> 339 342 346 352 352 353 355 355 356 357 357	<i>IV</i> : <i>Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.63 19.63 19.63 19.63 19.45 19.55	5) fiber 365 367 368 368 368 369 370 370 370 370 372 373 373	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44 19.40 19.44 19.40 19.44 19.39 19.39
<i>Exp.</i> 339 342 346 352 353 355 355 356 357 357 358	<i>IV</i> : <i>Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.63 19.63 19.63 19.63 19.45 19.55 19.42	5) fiber 365 367 368 368 368 369 370 370 370 370 372 373 373 374	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.753 2.723 2.676 2.676 2.650	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39
<i>Exp.</i> 339 342 346 352 353 355 355 355 356 357 357 358 358	<i>IV</i> : <i>Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.162	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.63 19.45 19.55 19.42 19.46	5) fiber 365 367 368 368 368 369 370 370 370 370 372 373 373 374 375	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.753 2.723 2.676 2.676 2.650 2.595	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34
Exp. 339 342 346 352 353 355 355 355 356 357 357 358 358 358 359	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56	5) fiber 365 367 368 368 368 369 370 370 370 370 372 373 373 373 374 375 376	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34 19.29
<i>Exp.</i> 339 342 346 352 353 355 355 355 356 357 357 358 358 358 359 360	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52	5) fiber 365 367 368 368 368 369 370 370 370 370 372 373 373 373 374 375 376 378	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.48 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34 19.29 19.28
<i>Exp.</i> 339 342 346 352 355 355 355 355 356 357 357 358 358 358 358 359 360 360	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.753 2.723 2.676 2.676 2.650 2.595 2.540 2.486 2.469	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.34 19.29 19.28 19.29
<i>Exp.</i> 339 342 346 352 355 355 355 355 356 357 357 358 358 358 358 359 360 360 360	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087 3.111	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.52 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34 19.29 19.28 19.29 19.37
Exp. 339 342 346 352 353 355 355 355 355 356 357 357 358 358 358 358 359 360 360 360 360	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087 3.111 3.065	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34 19.29 19.28 19.29 19.37 19.39
Exp. 339 342 346 352 353 355 355 355 355 356 357 358 358 358 358 359 360 360 360 361 361	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087 3.111 3.065 3.065	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46 19.46	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34 19.29 19.28 19.29 19.37 19.39 19.39 19.31
Exp. 339 342 346 352 353 355 355 355 355 355 357 357 358 358 358 358 359 360 360 360 361 361 363	IV: Cell B, torsion fil 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087 3.111 3.065 3.024	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46 19.46 19.46 19.49	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.34 19.29 19.28 19.29 19.37 19.39 19.31 19.36
Exp. 339 342 346 352 353 355 355 355 355 355 357 357 358 358 358 358 359 360 360 360 361 361 361 363 364	IV: Cell B, torsion fil 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087 3.111 3.065 3.024 3.024	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46 19.46 19.49 19.55	5) fiber 365 367 368 368 369 370 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387 389	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337 2.269	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.28 19.29 19.28 19.29 19.37 19.39 19.31 19.36 19.32
Exp. 339 342 346 352 353 355 355 355 356 357 358 358 358 358 358 359 360 360 360 361 361 361 364 364	IV: Cell B, torsion fil 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.162 3.190 3.136 3.087 3.111 3.065 3.024 3.024 2.919	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46 19.46 19.46 19.49 19.55 19.37	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387 389	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337 2.269	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.28 19.29 19.28 19.29 19.37 19.39 19.31 19.36 19.32
Exp. 339 342 346 352 353 355 355 355 356 357 358 358 358 358 359 360 360 360 361 361 361 361 364 364	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.190 3.136 3.087 3.111 3.065 3.024 3.024 2.919	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46 19.46 19.46 19.49 19.55 19.37	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387 389	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337 2.269 Ave	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.28 19.29 19.28 19.29 19.37 19.39 19.31 19.36 19.32 prage: 19.5 ± 0.1^{a}
Exp. 339 342 346 352 352 355 355 356 357 358 358 358 358 359 360 360 360 360 361 361 361 363 364 364	IV: Cell B, torsion fil 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.190 3.136 3.087 3.111 3.065 3.024 3.024 2.919	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.48 19.46 19.46 19.49 19.55 19.37	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387 389	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.670 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337 2.269 Ave	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.34 19.29 19.28 19.29 19.37 19.39 19.31 19.36 19.32 prage: 19.5 ± 0.1^{a}
Exp. 339 342 346 352 352 355 355 355 355 356 357 358 358 359 360 360 360 360 361 361 361 364 364	<i>IV: Cell B, torsion fil</i> 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.190 3.136 3.087 3.111 3.065 3.024 3.024 2.919	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.46 19.46 19.46 19.49 19.55 19.37	5) fiber 365 367 368 368 369 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387 389	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337 2.269 Ave	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.28 19.29 19.28 19.29 19.37 19.39 19.31 19.36 19.32 prage: 19.5 ± 0.1^{a}
Exp. 339 342 346 352 352 355 355 355 355 356 357 358 358 359 360 360 360 360 361 361 361 364 364	IV: Cell B, torsion fil 3.889 3.764 3.668 3.667 3.463 3.365 3.366 3.366 3.366 3.366 3.365 3.190 3.252 3.136 3.190 3.136 3.087 3.111 3.065 3.065 3.024 3.024 2.919	lament: Ni-Pt (10% 19.57 19.55 19.62 19.62 19.62 19.62 19.63 19.63 19.63 19.45 19.55 19.42 19.46 19.56 19.52 19.44 19.46 19.46 19.46 19.49 19.55 19.37	5.) fiber 365 367 368 368 369 370 370 370 370 370 372 373 373 374 375 376 378 379 380 383 385 387 389	Ave 2.875 2.848 2.986 2.844 2.835 2.798 2.764 2.775 2.753 2.723 2.676 2.676 2.676 2.650 2.595 2.540 2.486 2.469 2.497 2.442 2.353 2.337 2.269 Ave	prage: 19.1 ± 0.1^{a} 19.36 19.40 19.64 19.45 19.44 19.42 19.44 19.40 19.44 19.39 19.39 19.39 19.39 19.39 19.29 19.28 19.29 19.28 19.29 19.37 19.39 19.31 19.36 19.32 prage: 19.5 ± 0.1^{a}

Expt. V:	Cell C. torsion f	ilament: fiber Ni-Pt	(10%)		
324	4.571	19.73	353	3.346	19.49
329	4.367	19.72	353	3.492	19.72
339	4.015	19.77	354	3.413	19.65
341	3.890	19.69	356	3.326	19.61
341	3.992	19.85	358	3.221	19.55
343	3.765	19.60	358	3.170	19.47
343	3.890	19.80	362	3.024	19.44
344	3.823	19.75	362	3.040	19.47
345	3.690	19.59	364	2.973	19.46
345	3.793	19.76	365	2.912	19.41
346	3.647	19.59	367	2.876	19.45
346	3.739	19.73	368	2.820	19.41
348	3.647	19.69	369	2.811	19.45
348	3.823	19.75	370	2.777	19.44
348	3.690	19.76	370	2.759	19.40
349	3.522	19.55	371	2.736	19.42
350	3.464	19.51	371	2.713	19.38
351	3.538	19.69	372	2.693	19.38
3 - - -				Ave	erage: 19.6 ± 0.1^{a}
Expt. VI	I: Cell A, torsion	filament: Ni–Pt (10%	() fiber		
342	3.619	19.32	367	2.726	19.20
349	3.539	19.58	368	2.645	19.12
353	3.317	19.44	370	2.593	19.13
353	3.238	19.31	370	2.684	19.28
354	3.171	19.26	373	2.403	18.93
355	3.141	19.27	374	2.203	18.63
356	3.113	19.29	374	2.601	19.32
357	3.113	19.33	375	2.569	19.29
357	3.141	19.37	375	2.398	19.01
358	3.062	19.29	375	2.188	18.64
358	3.113	19.38	376	2.378	19.01
359	3.087	19.39	378	2.358	19.08
360	3.038	19.36	378	2.339	19.02
360	3.038	19.36	379	2.330	19.04
361	2.937	19.25	379	2.313	19.01
362	2.902	19.24	380	2.292	19.01
363	2.919	19.32	380	2.288	19.01
364	2.826	19.22	381	2.256	18.99
365	2.919	19.16	381	2.249	18.98
366	2.812	19.29	382	2.206	18.94

Average: 19.2 ± 0.1^a

Standard deviation.

The vapor pressure values of SbBr₃ measured in the temperature range by different cells and suspension filaments are given in Table 2. In the same table are also reported at each different experimental temperature the ΔH_{vap}^{0} (298 K) derived by the third-law treatment of the vapor pressure data.

As with the other halides^{13, 14}, it has been assumed that SbBr₃ vaporizes as the monomeric species. The necessary free-energy functions, $-(G_T^0 - H_{298}^0)/T$, for

TABLE 3

T		Condensed phas	se	Vapour phase	
(K)		$-\left(\frac{G_{T}^{0}-H}{T}\right)$	$\left(\frac{1}{298}\right)H_T^0 - H_{298}^0$	$-\left(\frac{G_T^0-H}{T}\right)$	$\left(\frac{H_{298}^0}{H_T^0}\right) H_T^0 - H_{298}^0$
298		49.50		89.49	· · · · · · · · · · · · · · · · · · ·
310		49.52	0.31	89.52	0.19
330		49.63	0.84	89.60	0.58
350		49.82	1.39	89.73	1.00
370	· · · ·	50.08	1.94	89.92	1.40
390		50.88	6.20	90.13	1.78
410		51.70	6.88	90.38	2.15
420		52.10	7.19	90.50	2.34
440		52.91	7.89	90.78	2.73
460		53.73	8.59	91.08	3.13
480		54.54	9.29	91.38	3.51
500		55.33	9.97	91.68	3.92

Free-energy function (e.u.) and heat content (kcal mole⁻¹) of SbBr₃ (m.p. 370 k)

TABLE 4

VAPOUR PRESSURE-TEMPERATURE EQUATIONS OF THE SbBr3 solid

Exp.	No. of points	ΔT (K)	$\log P (atm) = A - B/T$		
			Ā	$B \times 10^{-3}$	
1	45	337–368	7.63 ± 0.24	3.88 ± 0.08	
II	17	334-367	8.66 ± 0.20	4.28 ± 0.07	
III	11	338-368	10.04 ± 0.36	4.69 ± 0.13	
IV	26	339-367	10.14 ± 0.33	4.77 ± 0.12	
\mathbf{v}_{1}	29	324-367	10.54 ± 0.29	4.92 ± 0.10	
VI	21	342–367	10.21 ± 0.47	4.75 ± 0.17	

solid and liquid phases were derived from the absolute standard entropy, $S_{298}^0 = 49.5$ e.u. (ref. 15), the solid heat capacity $Cp_s = 17.2 \pm 29.3 \times 10^{-3} T$ (ref. 13), the $\Delta H_m^0 = 3.51$ kcal mole⁻¹ (ref. 16), and the heat capacity of the liquid reported by Takeyama and Atoda¹⁷. The free-energy functions used for the vapor phase are those reported by Clark and Rippon¹⁸. Their values and the corresponding heat content functions are summarized in Table 3.

The derived $\dot{SbBr}_3 \Delta H^0_{vap}$ (298 K) values are in very good agreement and therefore we selected the average value ΔH^0_{vap} (298 K) = 19.5 kcal mole⁻¹ with an error that should not exceed 1.0 kcal, taking into account the overall errors in the measurements.

TABLE 5

Method	Phase	Τ (K)	ΔH_T^0 (kcal mole-1)	∆H ⁰ ₂₉₈ (kcal mole ⁻¹)	Ref.
Static	Liquid	490	13.1 ± 0.2	19.0 ± 0.2	7
Transpiration	Solid	347	19.7 ± 0.3	20.1 ± 0.3	8
	Liquid	389	13.8 ± 0.3	18.2 ± 0.3	8
Static	Liquid	468	13.2 ± 0.2	18.8 ± 0.2	6
Static	Liquid	478	12.8 ± 0.2	18.6 ± 0.2	9
Torsion	$\begin{cases} Solid and liquid (III law) \end{cases}$	362		19.5 ± 1.0	Present work
	Solid (II law)	351	$20.1~\pm~2.3$	20.5 ± 2.3	Present work

HEATS OF VAPORIZATION OF SbBr3 at 298 K

Considering the small experimental temperature range covered, which also includes the melting point⁶, only the vapor pressures measured over the solid phase were used in order to determine pressure-temperature equations in the form

$\log P(\text{atm}) = \frac{A-B}{T}$

The values of the constants relative to each experiment were determined by the leastsquares method and are listed in Table 4. From these values, the equation

$$\log P(\text{atm} = (9.3 \pm 1.3) - (4.4 \pm 0.5)/T$$

is proposed for the temperature dependence of the vapor pressure of SbBr₃(s). The constants are derived from the weighted mean of the corresponding constants reported in Table 4. The associated errors represent the semidispersion of the data and should reflect the estimated uncertainties in the temperature measurements and the calibration constants. From the slope, the second-law sublimation energy, ΔH_{vap}^0 (298 K) = 20.5 \pm 2.3 kcal mole⁻¹, corrected at 298 K using the heat content functions reported in Table 3, was derived in spite of the relatively small temperature range covered. This value is in agreement with the third-law ΔH_{vap}^0 (298 K). In Table 5 our ΔH_{vap}^0 (298 K) values are compared with those reported in the literature corrected at 298 K by the heat contents of Table 3. This comparison shows an acceptable agreement; on this basis we propose the value ΔH_{vap}^0 (298 K) = 19.5 \pm 0.5 kcal mole⁻¹ for the standard vaporization enthalpy of antimony tribromide, giving more weight to our third-law results.

REFERENCES

- 1 H. Schaefer, Chemische transportreaktionen, Verlag Chemie Gmbh, Weinheim/Bergstrasse, Germany, 1962 (English translation, Academic Press, New York and London, 1964).
- 2 R. K. Willardson and H. L. Georing, Compound Semiconductors, Vol. I, Publishing Corp., New York, 1962.

- 3 V. Piacente and G. Balducci, Rev. Roum. Chim., 18 (12) (1973) 2083.
- 4 D. Ferro, B. Nappi and V. Piacente, J. Chem. Thermodyn., 11 (2) (1979).
- 5 D. R. Stull, Ind. Eng. Chem., 39 (1947) 517.
- 6 A. I. Ustinov and Es. Petrov, Akad. Nauk SSSR, Izv. Sib. Otd. Ser. Khim. Nauk, 2 (1970) 36, 43.
- 7 R. J. Sime, J. Phys. Chem., 67 (1963) 501.
- 8 G. A. Gray and R. J. Sime, J. Chem. Eng. Data, 10 (1965) 176.
- 9 K. Maeda, Sci. Pap. Inst. Phys. Chem. Res. (Jpn.), 67 (1973) 143.
- 10 R. D. Freeman, in J. L. Margrave (Ed.), The Characterization of High Temperature Vapors, Wiley, New York, 1967.
- 11 R. D. Freeman and A. W. Searcy, J. Chem. Phys., 22 (1974) 762.
- 12 R. Hultgren, R. L. Orr, P. D. Anderson and K. K. Kelley, in Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley, New York, 1963.
- 13 Gmelin's Handbuch der Anorganischen Chemie, Vol. 18B, Verlag Chemie, Weinheim, 1949.
- 14 V. A. Trifonov, V. A. Dolgikh, B. A. Popovkin, V. I. Belousov and A. V. Novoselova, Zh. Neorg. Khim., 20 (1975) 1470.
- 15 D. D. Wagman, W. H. Evans, J. Halow, V. B. Parker, S. M. Bailey and R. H. Schumm, Nat. Bur. Stand. (U.S.), Tech. Note, 270 (1965) 1.
- 16 C. E. Wicks and F. E. Blocks, Bull. 605, Bur. Mines, U.S. Govt. Printer, Washington, 1963.
- 17 K. Takeyama and T. Atoda, Bull. Chem. Soc. Jpn., 45(10) (1972) 3078.
- 18 R. J. H. Clark and D. M. Rippon, J. Mol. Spectrosc., 52 (1974) 58.