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ABSTRACT 

The basic principles of the description and processing of thermal analysis (TA) 
curves are examined. A rational approach is used to investigate the limits of thevalidity 
of phenomenological thermodynamics under non-isothermal conditions. The neces- 
sary thermodynamic relations and response functions are derived for thermophysical 
measurements of thermal and non-thermal (dielectric, magnetic and mechanic) 
property. Sixteen basic thermal coefficients are listed. Simple phase transformations 
are analyzed (including generalized Clausius-Clapeyron and Ehrnfest equations for 
the first- and second-order processes) and their theoretical courses are related to the 
experimental TA curves. Variant and invariant processes are distinguished with 
regard to the thermal development of their equilibrium background. Actual con- 
ditions of dissociation processes are also discussed. 

INTRODUCTION 

For the correct interpretation of an arbitrary physical measurement, where a 
particular physical property of the sample is measured as a function of an externally 
controlled parameter, it is necessary to consider the conditions under which the 
experiment is conducted and, consequently, the effect of these conditions upon the 
resulting data ‘_ The term conditions (or experimental conditions) means the way by 
which the studied material is transferred into the form of a sample and the properties 
of the environment which surround the sample during the whole course of measure- 
ment. From the definition of thermal analysis (usually abbreviated TA) as recently 
proposed by us elsewhere’ it follows that dynamic TA covers the group of selected 
thermophysical measurements where the state of the sample is investigated on the 
basis of its interaction with the heat of the surroundings if the temperature of the 

* See author’s note, p. 226. 



surroundings is intentionally programmed, preferably as a linear function of time. 
The complexity of relations between the assumingly dynamic experimental conditions 
and the resultiilg TA record is the major obstacle in utilizing TA methods exactly 
in physical chemistry, particularly if theoretical thermal analysis is still diverse and 
yet disproportiona13. 

With regard to the dynamic character of TA methods the generalized quantita- 
tive description must be looked for through the flux relations, as introduced in our 
previous works4- 6, i.e. the flux formulation of energy conservation law, principles of 
heat and mass transfer, chemical kinetics, etc. The application of these laws is not 
easy and is not unambiguous because many of them were originally derived for the 
conditions which are not always fulfilled during TA experiments_ We face the greatest 
difficulty, however, when coordinating the ordinary equilibrium thermodynamics 
with the dynamic character of TA measurements. Hence, the aim of this comprehen- 
sive work is the analysis of the validity of some generally used relations in non- 
isothermal conditions, the systematization of these relations within the logistic of 
TA and, last but not least, the correlation between thermodynamic processes and the 
types of resulting curves. 

Chapter 1 

ANALYSIS QF THERMOPHYSICAL MEASUREMENTS 

The unifying element of all thermophysical measurements to be looked after 
is the investigated sample itself and the way in which the sample is thermally treated. 
The detected physical property of the material is understood to represent the in- 
stantaneous state of the sample and it is up to the investigator to which temperature 
it is ascribed and in what manner it is analyzed_ Qualitative applications, as common 
in DTA, are a frequent subject of most TA books’. Quantitative measurements at 
an equilibrated (constant) temperature (static methods) are the most general methods 
of extracting thermodynamic information in solid state chemistry and physics. From 
the moment when temperature becomes time-dependent (dynamic methods) we face 
all possible problems connected with temperature gradients, hysteresis, supercooling 
and/or superheating, etc. Utility of dynamic measurements is thus not general and 
strongly depends upon the sort of material investigated and its capability to equilibrate 
fast enough to follow changing temperature; it must, of course, be tested for each 
experimental case. The comparison of mutual advantages of the equilibrium but time- 
consuming static methods with the comparatively fast but non-equilibrium dynamic 
methods provides the basis for the appropriate set up of our experiment. For the 
study of reversible processes the dynamic methods were found satisfactory. 

Nowadays the TA measurements are often understood in their broad sense 
and may cover almost all thermophysical measurements if the temperature is con- 
tinuously varied and if the physical property is also continuously registered. Although 
this all-covering approach provokes assumingly numerous physicists (because many 
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thermophysical measurements have their origin in experimental physics) we, in fact, 
have frequent reports on such TA techniques ’ as thermospectrometry, thermo- 
luminiscence, thermorefractometry, thermqacoustimetry, thermomicroscopy or even 
high-temperature (oscillation) X-ray diffraction and/or spectroscopy. These methods 
evidently belong among the measrrremzezzts of stmctur.al properties. These methods 
can be contrasted with the more classical methods of TA based on the measrueuzents 

of tJzermody~zanzic properties as temperature (Direct TA, DTA), heat content (DSC), 
volume, density, weight (TG), content of volatile products (EGD), as well as less 
common magnetization (MTA), polarization (ETA), deformation (TMA) and 
pressure (DPA). The theoretical description of later methods lies within the proposed 
scope of our introductory thermodynamics and hence is dealt: with in detail later. 

Almost all TA measurements yield merely single valued data of a given physical 
property although its local value within the mass of the sample may vary. Averaging 
such space inhomogeneities” (as well as most important temperature distribution) 
is in accordance with the theory of phenomenological thermodynamics where all 
quantities are assumed and characterized by their mean values. The neglect of gra- 
dients, however, is a most serious simplification particularly in determining the true 
state of solids but, on the other hand, is adequate to the present level of TA in- 
strumentation. The use of gradient theory (particularly assuming most effective 
temperature gradients) is thus not actual unless a more sophisticated instrumentation 
is introduced as, for example, space multidetection devices. 

The framework of phenomenological thermodynamics’ seems to be the most 
useful tool in finding the unifying groundwork of TA. For the sake of simplicity, 

we start by treating a simple one-component system to illustrate the principles of 

caloric and volume TA measurements, see Chapter 3 (In Chapter 2 we attempt to 
investigate the validity of basic thermodynamic relations in a more general sense of 
non-equilibrium condition of non-isothermal studies.) Consequently, the system is 
complicated by assuming the externally applied fields necessary for the description 
of dielectric, magnetic and thermomechanic TA and finally generalized for multi- 
component materials to describe TG, EGD, etc., based on the detection of volatile 
products, see Chapter 6. Although all these TA methods never take place at the same 
time, even as multisimultaneous techniques, their joint description well demonstrates 
the principal features of a complex thermodynamic approach. To achieve a uniform 
link and to ease our understanding we commence each of our system descriptions by 
listing the so-called corzstitrttive eqrratiozzs (material relations), see Chapter 2, e.g., 
Y = @x1, X,, ..) h w ere the state quantity Y is a function Pof variables X,, X,, etc. 

* We are not concerned with the magnitude of the system3* I-I when considering its influence on the 
extent of, for example, temperature gradients (macro- versus micro-methods of investigation and their 
accuracy of measurements), neither with the description of the microscopic state of the system3. * 
as ordering of crystallographic sites, distribution of species (and vacancies) on, for example, cation 
regular and interstitial sites, nor with their thermodynamic potentials which were dealt with in detail 
elsewhere”. 
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Fig. I. Graph of typical TA curves as recorded for the individua1 TA techniques, where a corre- 
sponding physical property 2 of the sample is plotted versus temperature T- 

Z 

It should be noted that we intentionally delete from this approach the descrip- 

tion of electric conductivity (amperometric TA) because this method is directed to 

investigate the Aux property of materiaIs, i.e. the detection of electric current passing 

through the sample layer which is evidently a case similar to the purely kinetic studies 

of mass diffusion and/or heat conductivity bearing their own values of the energy of 
activation. Neither have we dealt with the description of the energetics of surfaces 

and interfaces which is discussed in the forthcoming text at a minimum level just to 

give the basis of heterogeneous new phase formation_ 

Let us now -turn our attention to the possible kinds of TA records” as shown 

schematically for the above selected methods of TA in Fig. l_ Every record can be 

divided into smooth lines called base Zincs and their sudden changes called e&cts. 

The upper part of Fig. 1 exhibits two sorts of effects: the change of the base line 

slope called break and the stepwise displacement of base lines called step (wave). 

This is typical for thermogravimetry, thermodilatometry, thermomechanical and 

electromagnetic measurements. Another effect called peak arises from a sudden 

increase and decay of the measured property 2 and occurs at direct TA (heating and 
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cooling curves), DTA, DSC and methods associated with evolved gas detection, see 
middle part of Fig_ l(b)_ A similar effect, however, can be obtained through an 
electronic derivation of upper curve (a) sometimes presented as an independent 
measuring technique as DTG, similarly DDTA, DDSC, IDTA and DEGD shown in 
the lower part of Fig. 1. Here also an additional effect called oscillation appears. 

It follows that each TA technique provides only that kind of record appropriate for 
further analyzing_ Additional electronic, analogic as well as numerical treatment 
merely provides a derived record which can serve as complementary information 
only I O or for an advanced characterization when using computers. 

To extract the desired data, we must identify mathematically individual base 
lines and effects and then relate them to a given thermodynamic and/or kinetic 
description. Base line can be analytically expressed in the form of a series, most 
conveniently as Z = ni= I + a2T + a3T2 - a4T3, where T is the temperature and 
ai are constants. In most cases, a linear approximation (first two terms of the 
series) is satisfactory (linear materials). The thermodynamic meaning of thermal 
coefficients for individual TA methods in question is thus analyzed in Chapter 3 

where a simple development of the thermal state of the sample is described_ Chemical 
reactions and structural transformations are indicated by a base line discontinuity 
and the resulting effects should be analyzed with regard to their positiotz (charac- 
teristic temperatures), size (integral change of the measured property), see Chapter 4, 
and drape (time-development of the measured property), see Chapter 5. The last two 
phenomena, however, may exhibit a mutual interference of reaction kinetics and 
thermal development of equilibrium (thermodynamics), compare Chapter 5. The 
mathematical description of individual effects falls into two categories: determination 
of characteristic poit2ts1 I, e.g. the beginning and end of the break, extrapolated point 
of base lines intersection; beginning and end of the step inflection point, step width 
and height 12; beginning and end of the peak, extrapolated onset and offset, front and 
rear inflection point, peak width and height, extrapolated peak width, actual and 
linearly interpolated peak background, etc., and determination of itwtarttarleous 

values (compare Chapter 5) which may be eased by fitting the curve with a suitable 
function’ 3, e.g. higher-order polynomials Z = p,(T)/p,(T), exponentials Z = 

w_1 t a1 exp (a,T)], logarithm Z = a, + [a,/ln(a2T)]a3 and hyperbolic tangent 
Z = tanh(TO). To establish the total change of the measured property, Z, the step 
is the most appropriate curve because the peak must be gradually integrated as well 
as the break derived_ Evidentiy a satisfactorily readable record is the essential require- 
ment for a successful interpretation of TA data*. 

* The discussion of partial or whole curve fitting and smoothing with regard to further computer 
treatment which is usually accomplished by applying more complex, e.g. orthogonal functions 
possibly under curvature tension (i.e. spline-functions to avoid the creation of inevitable inflections), 
is not the aim of this review. Neither do we assume the backwards consequence of certain mathematical 
operations such as derivation or integration which result in changing the scatter and/or smoothness 
of the originally recorded trace. A detailed mathematical approach will be dealt with elsewhereld. 
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Fig. 2. Simple closed thermodynamic system, where the state of the system under TA study is 
represented by the entropy S, temperature T, volume V, pressure P and internal energy ZJ- Externally 
controiled parameters of the surroundings are the temperature T,, pressure P, and the time progress 
of temperature i,. 

Chapter 2 

RATIONAL DESCRIPTION OF A THERMODYNAMIC SYSTEM WHILE 
EXTERNALLY HEATED 

The basic need of a rational approach is to choose the minimum number of 

variables necessary to describe a system satisfactorily. For the sake of simplicity, 
we assume a simple (homogeneous) system with constant (one component) composi- 
tioL where no chemical reactions occur. In order to give a mathematical description 
of such a system, we must define it as a physical object in which we can specify certain 

basic quantities- They may be temperature, T, volume, V, pressure, P, entropy, S, 
internal energy, U, and heat exchange, 0 (= dQ/dt), between the sample and its 
surroundings (*)_ Such a system is shown schematically in Fig. 2 and exhibits all 

the basic features of a simple thermoanalytical arrangement. 
The temperature, r, pressure, P, and the rate of heating, ?! (= dT/dr), can be 

externally controlled and are thus independent while the remaining quantities behave 

as the dependent variables. It is assumed that the system is not in its equilibrium state 
and the possibility of obtainin g its description by means of ordinary thermodynamics 
must be first analyzed. 

The main idea of how to make a more flexible framework for the thermodynamic 
description of the system can be obtained on the basis of rational thernzodyna- 
micsl ‘- 1 ’ as recently summarized by Kratochvil ’ 8 To this effect, let us define our . 

thermodynamic process in question as continuous sequences of the state of the 
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system. Simply, the process is fully described when the basic quantities are given as 
functions (superscript A ) of time, t, or 

T = p(t) 
V = P(t) 

P = P(t) 

s = S(t) 
u = U(t) 

0 = Q(t) 1 

process (1) 

The term e is the typical phenomenon accompanying any thermoanalytical experi- 
ment and can always be obtained from the energy conservation law 

fT=Q-pv 

where superposed dotts mean the time derivative. 

(2) 

Specific properties of the sample can be characterized by three material rela- 
tions, G, V and S, expressed as functions of the state of the sample. The state is now 
identified with the instantaneous values given for the three externally varied para- 
meters, say pressure, P, temperature, 7-, and its time change, i; namely 

G = &P, T, p) 

V = v(P, T, T) 

S = f?(P, T, r) 
(3) 

The entropy principle requires that for all processes of this system the rate of heat 
exchange, (i, be limited by the maximum value of entropy change, s, or 

s r o/T (4) 

Employing this requirement, we can draw important conclusions_ Introducing a state 
function in the form 

G=U-TS+PV (5) 

which is conveniently caIIed the Gibbs free energy, we have from eqns. (2) and (4) 

OzG++P-VP (6) 

Using eqn. (3) we proceed by introducing the partial derivatives into the inequality 
(6) to obtain 

02 [I %P.T3.) I 
a- 1P.f 

+ S(P, T, T) ] T + 

(7) 

Equation (7) must be fulfilled for any process so that the values of T, P and their 
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time derivatives 5!‘, P can be chosen independently and arbitrarily. Hence for F = 0 
and 9 = 0, eqn. (7) is reduced to (dG/Zi‘)T 9 0, which can be identified for all 
possible values of ZC only if the term in the parentheses is equal to zero. From this 
it follows that the function G cannot be dependent on p; thus G in eqns. (3) is only 
G = G(P, T), i.e. Gibbs free energy obtains the form known from ordinary thermo- 

dynamics. 
SimilarIy, if we choose i, we have eqn. (7) in the form [aG/M + VJP Q 0 

being already aware that o’G/a?- = 0. Because the term in square brackets is inde- 
pendent of P, and P can be chosen arbitrarily, we obtain 

aGWJ-, I I ap T.T 

= V(P, T) (8) 

The analysis of the last term of eqn. (7) is more complicated. Let us divide the entropy, 
.S, into its equilibrium part, SC, = sC,(P, T) 3 s(P, T’, p = 0), and the comple- 
mentary part [S - Ses]_ What remains from the inequality (7) can now be rewritten 

as 

P.i 
+ Seq(P, T) 1 ?’ + [S(P, T, T) - S,,(P, T)] i- 

For fixed P and T, this inequality expresses the variable i-in the analytical form of 
0 2 aYf + b(f)?, where b(p) approaches zero if ?-, 0. Such inequality can be satis- 
fied for arbitrary Ponly if a = 0 and [b(?)P] d 0, or 

%PJ-, I I aT p,i_ = - SCCJR T) 

cw, T, T) - &q(P, Tll T I 0 (11) 

Equation (11) represents here the so-called dissipatiorz izzeqztality, i.e. the non-ideality 
of our material under study. If the term b(T) is negligible or small enough, we come 
to the so-called quasistatic processes, where an ordinary description by means of 
classical thermodynamic relations [see eqns. (8) and (lo)] is satisfactory_ 

The application of our approach now depends on the kind of material in- 
vestigated and on the rate of temperature change. It is evident that, for example, a 
perfect gas will always behave ideally regardless of the conditions externally applied. 
However, in thermal analysis we often encounter rather non-ideal materials such 
as solids and, hence, the heating rate becomes decisive. Nevertheless, for ordinary 
TA runs (p > 0, r = 0), where the heating rates are of the order of magnitude of 
lo- l K set- l, the state functions of G, V and S depend predominantly on P and T 
and the effect of ri-is negligible. This, in fact, is in accordance with the well-known 

result following from thermodynamics of irreversible processes which says that for 
the systems which are not too far from their equilibrium state and where the processes 
proceed fast enough, the ordinary thermodynamics can be utilizedlg- ‘l. 



205 

It is evident that this “classical” thermodynamics or "therrnostatics" forms a 
limiting case of a general rational approach and thus its applicability must be care- 
fully investigated for each experimental case. For example, if we start to deal with 
greater and non-uniform heating rates (7? $ 0, acceleration T # 0), the system of 
eqns. (3) may not be adequate because it does not include the systems possible 
dependence upon the second (or even higher) derivatives in T, e.g. G = G(p, T, i, r). 
This holds true for some extreme conditions when, for example, some explosive 
reactions are studied and/or for such a non-ideal material which can remember 
its thermal history. The ordinary Gibbs free energy then alters by an additional 
termI’, dG/a? # 0 exp ressing higher dissipation. The discussion of such a system, 
however, is beyond the scope of this review and also beyond an ordinary thermo- 

analytical experiment. 

Chapter 3 

BASIC THERMODYNAMIC RELATIONS AND MEASURABLE QUANTITIES 

When investigating quasistatical transformations of the energy [see eqn. (2)] 
of our studied macro-system into its particular forms, the so-called phenome~zologicaf 

t17ern70dyi7an7ics3* ' is of great help to a better understanding of the general principles 
of a TA experiment. It aids our interpretation of how to construct mutual inter- 
connections between the thermal and non-thermal properties of the system. The 
most ready-to-use result of such a description is the set of relations, conveniently 
called respoizse fur7ctions, correlating thermodynamic quantities with those which 
can be detected by means of a direct thermophysical measurement. For the simplest 
case of a closed system discussed above we readily transform3 internal energy 
U = o(S, V)anddU= TdS - Pd V into the form of Gibbs free energy G = @T, P) 
and dG = -SdT + VdP by replacing the extensive parameters S and V by the 
intensive ones, T and P, which do not depend upon the quantity of the system and 
which can be more easily externally controlled. On the other hand, we should bear 
in mind that the experimentally measurable state of the system is best reflected by 

the instantaneous values of the extensive parameters V and S as functions of the 
intensiveparan7eters P and T [see eqns. (3)] with regard to the size of the system*. 

By the use of thermoanalytical convention the state of this system can be 
investigated in two different ways: by volume measurements V = @‘(P, T) and/or 

* The greater the magnitude of the system investigated, the better the sensibility and resolution 
achieved for the detection of an extensive parameter. On the other hand, the accuracy of determination 
of an intensive parameter improves for smaller systems (mainly due to decreasing gradients). There, 
however, arises the controversy of how to measure experimentally intensive parameters through 
which the representative extensive quantity is estimated. The typical case is that of temperature10 
(thermometric measurements as DTA, spontaneous heat flux. measurements as DCC) or pressure 
(non-isobaric measurements, isochoric measurements as DPA), etc. 
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enthalpy measurements H = &P, S) = l?[P, s(P, T)]. As both functions are the 

state functions, we can express their total differential as 

dV= (g)=dP + (g)pdT 

and 

(12) 

dH = ($$U’ + (g), [(g)=dP + ($r),dT] 

= VdP + T E-(g) dP + (g) dT] (13) 

where the partial derivatives can be identified with the following experimentally 

attainable coefficients 

thermal compressibility - /? = ?._ 

thermal expansion CL, = 
t(%)P = ( ::T),,$ 

and 

heat capacity c, = (s), = - T($)p = T($)p 

Finally, it yields 

dV= a,VdT- j?VdP 

dH = V(I - a,T)dP + c,dT (15) 

It can be seen that the change of the thermal state of our macro-system is 

accompanied by the changes of all the macroscopic properties in question and, 

conversely, the change of any macroscopic property results in changing the thermal 

property. This fact documents the major importance of thermodynamics in describing 

a TA experiment in its broad sense of a general thermophysical measurement. In 

addition, the change of temperature will not only affect the above-listed thermal 

properties but will also change mechanical, electromagnetic22- 25 and optical 

properties, and will affect the rate of chemical reactions3, heat and mass transfer, etc. 

Consequently, let us consider a more complex system assuming the exchange 
of a volatile component between the sample and its surroundings (a partly open 

system) as well as new externally applied fields: electromagnetic and mechanical, as 
schematically shown in Fig. 3. New intensive parameters which are to be externally 
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EXTERNALLY APPLIED FIELDS 
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c&l 
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L --- 

Fig. 3. Partly open, quasistationar thermodynamic system suitable for the portrayal of TA methods 
as calloric, thermodilatometric, weight, evolved gas, magnetic, dielectric and thermomechanical 
measurements (symbols see text). 

controlled are p, S, E and Fcalled the chemical potential, magnetic and electric fields 

and mechanical tension, respectively. Corresponding extensive parameters represent- 

ing the state of the sample are n, M, 9 and T, known as the mole number, magnetiza- 
tion, polarization and deformation. We certainly cannot control directly the chemical 
potential of the surroundings but we choose the partial pressure p. (assuming the 
validity 11~ = ,Q, + RT In po). It should also be noted that the previously used term 
VdP retains its real meaning only if the material investigated does not become 
anisotropic under the action of the external fields (i.e. homogeneity condition)*. 
The chemical potential term izd/c is expressed in the form of a summation according 
to the number of phases in the system. 

Let us imagine a generalized state function @ depending exclusively on the 
intensive parameters as independent parameters of our TA experiment 

@ = @(T, P, /1,X, E, F) (If9 

The differential form of this thermodynamic potential is analogical to Gibbs free 
energy G but more comprehensive 

d@ = -SdT + VdP - Ndp - MdS’ - BdE - +rdF (17) 

l For a more rigorous analysis of electromagnetic and mechanic measurements it is more convenient 
to replace the term Pd V by the term pdg, which indicates the energy change in a unit volume of the 
sample as a result of a mass change for given E, A? and F_ The symbol p is density and q means here a 
chemical potential of a unit amount of the mass of the sample. 
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By making partial derivatives we obtain an extended number of thermal coefficients 
as listed in Table 1. Here we are merely concerned with the derivatives between the 
intensive (X) and the corresponding extensive (Y) parameters and the mixed deriva- 
tives with temperature as the essential coefficients for theoretical thermal analysis. 
The parameters which are kept constant during the derivation and which are usually 
marked as the subscripts of individual partial derivatives are, for the sake of simplicity, 
omitted. Some coefficients are evidently simplified when we assume real materials. 

The electromagnetic field and particularly the mechanical tension must be understood 
as tensors which may yield for an anisotropic material as many as six coefficients for 

each c,, cc, and KFT. Some interesting coefficients can also be obtained on the basis 
of interactions between non-thermal properties only, as e.g. electromagnetic field 
with mechanical tension (piezoelectric coefficient dr = 8 g/aFor = &/dE 2 2, magneto- 

elastic coefficient C,, = BM/dF = &l&Z) and/or pressure with mole number (molar 
volume V = 8~(/8P or = aV/&z, change of concentration with pressure V Knp z 

anlap or = avlapc), etc. 
Following Table 1 we can derive a set of equations in analogy with the proce- 

dure given for volume by eqns. (12) and (14) suitable to describe thermodilatometry 
or differential pressure analysis and/or experiments carried out in sealed ampoules 
(dV = 0). Th ese relations describing the change of the selected extensive property Y 
as a function of the corresponding intensive parameter X and the temperature T 

then hold the form 

II = 2(/l, T) dtz = (d/z/a&- d/r + K,,,- dT (18) 

M = Ici(H, T) dM = xdx i- CL,, dT (19) 

9 = &(E, T) dg = x,,dE f pp dT (20) 

Z = ?(F, T) dt = C,dF+ a,dT (21) 

These equations become essential for the respective thermogravimetric, thermo- 

magnetic, thermodielectric and thermomechanical measurements under given 

experimental conditions. 
In analogy with the well known form of entropy equation suitable to describe 

caloric measurements 

dS = c+VdP - cp/TdZ- (22) 

we can distinguish four particular forms of investigations common in physical 

chemistry and physics 

dY=O isolated (thermally closed) system (e-g. dS = 0 adiabatic or 
for eqn. (14) dV = 0 iso- 
choric) 

dX=O system under constant external field (e.g. dP = 0 isobaric) 
dT=O system at constant temperature (e.g. dT = 0 isothermal) 
dT = const. system under constant heating (TA) (e.g. dT = 4 non-iso- 

thermal) 
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dY, dX, dT # 0 system out of control (e.g. undefined experi- 
mental condition) 

Equations (14) and (19-o-(1) express the thermal development of non-thermal 
(non-caloric) property of the sample. In basic TA methods, however, we are usually 
concerned with the thermal development of thermal (caloric) property of the system 
which is essential to any calorimetric work. Thus we can derive the relations of the 
enthalpy-like term H upon a given intensive parameter X [compare eqns. (18)-(21)] 
and the temperature T in analo,T with eqns. (13) and (15). 

H = H(p, %, T)) dH = (n - T K,,,)dp + cp dT (23) 

H = @(A@, s(Z’, T)) dH = (M - Tcc,)dc% + c, dT (24) 

H = fi(E, f?(E, T)) dH=(Y- Tp,)dE + CE dT (25) 

H = fi(F, s(F, T)) dH = (r - TccJdF + c, dT (26) 

Chapter 4 

THERMODYNAMICS OF SIMPLE PHASE TRANSFORMATIONS 

In the preceding part we shown the thermodynamic picture of a heated system 
where no chemical reactions and structural transformations occur which, in fact, 
corresponds to the base line of respective TA records. Moreover, it demonstrates 
well the necessity of a proper definition of the set of intensive parameters to be chosen 
in accordance with the externally applied, so-called experimental conditions to achieve 
a successful description and classification of individual TA methods’* 6p 12. In 
our experiments with rising temperature, however, we are more concerned with the 
characterization of thermal effects which change the smooth course of the base line 
of a TA record. Such turns are usually caused by the process of phase transforma- 
tionZ6’ 27, where a stable (or metastable) phase A is transformed into the other, 
thermally more stable phase B; or A with @(TA, PA, /(A, S’A, EA, FA) + B with 
@(TR, PB, pB, sB, I!&, FB)_ There arise two basic problems: (1) how to find the con- 
ditions of the two equilibrium phases and, (2) where and how one phase transforms 
into the other. 

The principal condition of equilibrium is given by the minimum of the potential 
@ (d@ = 0) associated with the secondary conditions valid for all the extensive 
parameters, dYA -j- dY, = 0. It follows that such a system must be in thermal as 
well as mechanic and electromagnetic equilibrium, where XA = X, = X& In other 
words, with a continuous change of temperature, the other intensive parameters 
must also change continuously [which is particularly important for the chemical 
potential p as classically assumed for multicomponent systems]. With regard to the 
given couples of intensive variables T and X chosen in eqns. (18)-(22), we obtain for a 
single component system the equality 

@WA, TA) = @(G,, TB) (28) 
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Fig. 4. Three-dimensional representation of the state of two phases (A and B) mutual relation. The 
equilibrium (eq) is described by the double solid line, which holds for the general thermodynamic 
potential @A(TA, XA) = @B(TB, XB), see text- 

(se& Fig. 4) the solution of which are the curves X = X(T) usually represented in the 
form of diagrams, P-T for liquids, p-T for solid solutions, S--T for ferromagnetics, 
E-T for dielectrics and F-T for mechanically stressed systems2 ‘. 

The conditions of a thermodynamic equilibrium do not put any limitation on 
the change of the derivative of the general potential with an intensive variable, 
&D/3X, which may have in the different phases different values. As each phase rep- 
resents here a homogeneous system and the coexistence of two phases, A and B, 
becomes discontinuous (i.e. a heterogeneous system defined as the sum Y = pi Yi), 
the two phases must differ by the value of at least one property, as, for instance, the 
density, specific heat, magnetization, etc. The discontinuity in &P/6X is thus most 
suitable for the classification of phase transformations and the characteristic value of 
X, at which the transformation occurs, is the equilibrium value of the given intensive 



Fig. 5. Graphical illustration of possible types of phase transformation for the non-isothermal 
degree of transformation, L, and the general thermodynamic potential, @, as a function of tempera- 
ture. The underscripts in, var, corn, eq, o and F mean invariant, variant, composed, equilibrium, 
initial and final, respectively and dashed line indicates actual “response” curves. 

property, X,,. From the viewpoint of TA the most interesting are the derivatives with 
temperature, see Fig. 5, as the caloric term -SdT always takes part in any of the 
so far used forms of our potential CD. This yields the discontinuity in entropy AS, 
which means that during this so called$rst-order transformation a certain amount of 
latent heat (TdS = LIEI) is always absorbed or generated. If the first derivative in @ 
is continuous, at least the second derivative is stepwise showing the so-called second- 
order transformations (as also illustrated in Fi g. 5) which are always accompanied 
by the change in the value of thermal capacity AC,. It follows that the thermophysical 
measurement of the enthalpy content is the principal and most general method of 
thermal analysis because it can detect any physico-chemical process. The most 
important result may be found in generalized Clausius-Clapeyron and Ehrnfest 
relations which are listed in Table 2’ ’ * 2 ‘* 27. Th e set of these relations is experi- 
mentally very useful as they reflect the alternation of externally applied parameters 
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in terms of the stepwise changes of experimentally’measurable extensive quantities. 
During a TA experiment, the temperature is gradually raised so that the whole 

transformation does not have time to proceed instantly at a single temperature, T_,. 

Thus, it is of great importance to determine the temperature dependence of AH 

inr.luding~the simultaneou, effect_ of the second intensive parameter X, i.e. AH = 

AH(X, AS(X, T)). Making partial derivatives we can proceed according to eqn. (13) 

to obtain 

dAH -= 
dT 

AY-Tg g 
> 

-I- AC, 

By the substitution for B’,,aX from Table 2 we have’ 

dAH 

-=Acx+-T- dT 
AH-- aln AYAH 

aT 

(2% 

(30) 

where AY equals respective AV, An, AM, A 9 and Ar, according to the type of trans- 
formation listed in Table 2. In the sense of Fig. 4, eqn. (24) expresses the Shift of AH 
along the transformation boundary shown as the double-solid line. This equation 
is most often used for the .simplified description -of subIimation and/or melting 

(X = P, A Y = A VB), where the second and the last term of the right-hand side of 
eqn. (30) cancel each other yielding dAH/dT z AC,. If multipIe effects of axl/Zr, 
GX,/aT - - - are assumed, the last two terms in eqn. (24) reappear for each new A Y. 

According to the preceding scheme, we can derive the required increase of any 
non-thermal property dX, to balance the equilibrium of transformation if the other 
non-thermal property is changed by dX,, i.e. dX,/dX, = X,,A Y,/AY, (compare 

Table 2), as well as to find out the non-thermal dependence of any d Y’in analogy 
with eqns. (29) and (30) [AF = A$((x,, &Xl, X2))] which, of course, falls beyond 

the normal TA practice. 
It should be emphasized that all precedin g equations-are correct only if the 

experimental conditions are well defined and restricted to given values. If one of the 
externally applied parameters is out of control, the process of transformation becomes 
undetermined within our measures which can be graphically illustrated by the dotted 
line in Fig. 4. This is particularly important for the so-called self-gezzer-ating corzditiozzs 

which are often applied in terms of non-constant pressure P and/or partial pressure p. 

(2 p) usually found when the dissociating sample is placed in a partly sealed crucible 
or when applying undefined vacuum. Similar effects may result from a free motion of 

the sample, which is suspended in a non-homogeneous electromagnetic field. 

Chap#er 5 

DESCRIPTION OF THEORETICAL AND EXPERIMENTAL CURVES 

The object of the majority of TA measurements is to find out and to describe 
the effects which occur during the heating of the material under investigation. The 
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analyses -of TA data are thus directed to establishing the relation between the ex- 

perimentally obtained curves and the actual course of our thermodynamic process, 
compare eqns. (1). Let us focus our attention to the simple one-component trans- 

formation,.see eqn. (28), ?zA + nB- For the sake of simplicity the set of eqns. (1) may 

be reduced to 

(or -nB = n&t)) 

where, however, we intentionally neglect the energetics of A-B interface formation_ 
As the transformation cannot take place at temperature TCq infinitesimally fast, it is 
necessary to define the progress of transformation by a dimensionless parameter 5, 

called the true degree of transformation28 (or generally conversion) 

< = iIA/(nA f %) or (1 - 5) = %&B + nA) (31) 

where i2A and tlg are the instantaneous mole numbers of the respective phases. The 

choice of non-dimensional parameters normalized within the interval (0,I) is in 
accordance with ordinary kinetic convenience. 

The practice of TA measurements is to coIlect al1 information on the in- 

stantaneous state of the sample and on the time progress of the change of its state 
on the basis of a certain physical property of the sample, which is experimentalty 

measured and chosen to represent the state of the sample. This property must be 
evidently dependent on the quantity of the sample, i.e. it must be an extensive para- 
meter characterizing the material investigated such as enthalpy content, density, 
weight, length, volume, magnetization, polarization, mechanic deformation, possibly 

weight loss and/or amount of volatilized component, as will also be shown Iater 
on. The experimentally detected course of the process is thus best described by the 

effective degree of transformation, A, defined on the basis of an experimentally 
measured property 2 by the equation28P 2g 

]=z--O ., 
zF-zO 

(32) 

where 2, is the initial and 2, is the final (ultimate) value of Z. One of the principal 
premises of TA is the identity between 5 and /, which is usualiy accepted without 

proofs as proportionality 

5 = KJ (33) 

Hence it is interesting to compare the thermal development of both these degrees. 
We can assume that the measured property is proportional to an extensive parameter 
of the system, 2 = KY Y. For the constant mole number of the system (nA + nB) = 

const. we have by eqns. (31)-(33) 
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For the total change (,4 Y = YF - Yo) the proportionality coefficient KA keeps a 

certain value in accordance with the corresponding thermal coefficients in Table 1, 
e.g. 

KJ_ = (35) 

which is approximately constant for a narrow temperature interval of the process 

duration. 
The experimental task of TA measurements is the transformation of experi- 

mentally recorded signal Z,,,,,,. to the true value of measured physical property 2. 
For most TA apparatus there exists a direct or almost direct proportionality in the 
form 

z = zne,s_ Kpp. (36) 

where K&_ is known as apparatus constant to be established by calibration_ This is 

adequate, for example, for weight measurement of magnetization, compensation heat 
fiux measurements in DSC or length measurements in thermodilatometry. For some 
special instrumentation, however, the proportionality (36) reaches the form of a 
more complicated function as3 O - 32 

Z = 2(Z,,,,., imeas.7 T, ri: P, 9, Kapp., - - -1 (37) 

the typical example of which is the case of DTA’ 3, DCC or DPA. 
Having determined Z we can evaluate the so-called reaction kinetics from the 

time-dependence of our process using L = L(t) and T = F(t). The kinetics of the 

- 

I 
T 

LINEAR NONISOTtiERMAL 
T= 0 

ISOTCrERMAL 
T= conrc 

i=o 

AC_TUAL ~ONISOTUERMAL 
T=O,T’O 

Fig. 6. ExempliScation of the most common methods of thermal treatments. Solid lines show the 
idealized course of temperature while dashed lines express the actual course of temperature due 
to the heat absorbed (assuming an endothermic process). Dashed-and-dott lines specify the charac- 
teristic temperatures, compare Fig. 5. 
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can be expressed by two basic constitutive equa- 

(38) 

They are practically evaluated in three different ways, see Fig. 6, 
(i) isothermal kinetics assuming 

T = constant (and F = 0) 
x = f(l) k(T) 

(39) 

where f(3,) and k(T) are functions called the model relation and the rate constant 
respectively being dependent on the separable variables 3. and T only. 

(ii) litwar non-isothermal kirletics assuming3 ’ 

T= 4 = constant (i.e. T = T,=, + q5 t) 

j, = f’(J, T)k’(T, @) z f(il)k(T)@ 
(W 

where 4 is the constant heating rate. 
(iii) actual (nonlinear) kinetics, where eqns. (38) are to be applied without 

simplifications_ Here we are not able to separate individual parameters as in eqns. 
(39) and (40) 2g* 3 6_ Simple numerical determinations of ordinary kinetic parameters, 
e.g. activation energy which is popular in isothermal and linear non-isothermal 
kinetics, are not possible in this complex case (iii). 

Let us investigate in greater detail the speciality of a thermoanalytical descrip- 
tion of an actual “kinetic” curve, particularly if the process nA --f 11~ is not thermo- 
dynamically to take place at a point temperature T,, but within a certain temperature 
interval To - TF, where phases A and B can coexist. The terminal state of the system 
may thus become temperature dependent due to the change of equilibrium with 
temperature. This effect is important in all non-isothermal studies and ought to be 
incorporated into the calculation. Considering eqn. (32), where the value 2, reaches 
evidently its maximum value, we can imagine that this equation is composed of two 
parts: kinetics and equilibrium. Accordingly, we may introduce a new term28 called 
the advancement of equilibrium of the process ,I,, defined as 

3 _ Zr - =0 
-=q - 2 - zo TF 

(41) 

where Z-r is the terminal equilibrium value of Z for the given temperature T, compare 
Fig. 6, while Zr is its ultimate value reached at the end of whole process evidently 
independent of temperature. This term, in fact, describes the propagation of equilib- 
rium under the conditions of an infinitesimally slow temperature increase. Combining 
eqns. (41) and (32), we obtain=’ 

z--o _ /, = 3.,, z - I,,, a 
T 

_ z 
0 

(42) 
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where o! is the isothermal degree of transformation defined in accordance with ordinary 

isothermal studies. It follows that 1. can be understood as the non-isothermal degree 

of transformation containing all complex information about the process normally 

provided by a set of cc determined for a series of T(Z,,) within the interval T&Z,) 

to T&Z,) (compare Fig. 6). 

From the point of view of the equilibrium background of the process we can 

classify the first order process into invariant (single temperature T,,), variant (temper- 

ature interval TO-T,) and combined (where the process proceeds partly as invariant 

and partly as variant), as it is graphically demonstrated in Fig. 5, where dashed lines 

show the actual course of the process owing to kinetic retardation. 

For TA practice there follow important considerations2’. 

(i) For invariant processes, where 2- = CL, it is not necessary to take any pre- 

caution for the curves interpretation. 

(ii) For variant and combined processes we should either use the truly non- 

isothermal degree of transformation, which is not common as yet, or to employ 

enough high heating rates which enable us to evaluate the major part of TA curve 

above T,, i.e. above two-phase region where again I. = cc. 

(iii) For the description of the second-order processes it is only convenient 

to use the derivative of the experimentally obtained curve which can then be treated 

in the same way as first-order processes (compare Fig. 5) last column, i.e. the trans- 

formation of the break with no inflections to the step with one inflection point. 

Let us concentrate our attention on Fig. 5, which is instructive enough to find 

analogy between the graphical demonstration of increasing derivatives in ~25 with the 

kind of experimental curves and their derivatives (compare Fig. 1). With the gradual 

transition from lower to higher derivatives, the curve changes its character; it be- 

INTERNAL I EXTERNAL ,_ 
FLUXES FLUXES 

Fig. 7. ActuaI conditions of a heterogeneous system during a TA experiment, where externally 
applied fields (compare Fig. 3) are absent but where we consider internal fluxes across the phase A 
and B interface I. 
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comes mathematically more distinguishable as the number of inflection points and 
extremes increase99 “9 37. From a certain stage, however, the effect cannot be 
quantitatively evaluated as, for example, oscillation (see Fig. l), defined by three 
inflection points. Therefore, it is important to know the proper form of any experi- 
mental curve for a given TA instrumentation and to distinguish its electronically 
derived analogue to make possible a correct determination of a true (“kinetic”) curve. 

Chapter 6 

ACTUAL CONDITIONS OF DISSOCIATION PROCESSES 

So far we have not considered the content of a volatile component (v) in our 
sample, i.e. the transformation well known as dissociation process and often en- 
countered in TA practice. Let us imagine our system in the form illustrated in Fig. 7. 
Two basic external fluxes take place between the sample and the surroundings: 
0 (heat flux) and ri’ (mass flux). The overall behaviour of the system can be expressed 
on the basis of the energy and mass conservation law, compare eqn. (2), as 
shown in our previous works4- 6 

already 

(43) 

which, in fact, is the flux formulation of the first law of thermodynamics. As the 
enthalpy is a more convenient parameter in TA measurements, then 

A=& vP+/l*iY (44) 

where H is the system enthalpy which for our heterogeneous system composed of 
phases A and B holds as the sum of HA and HB. In accordance with eqn. (13), we 
have to assume H as the state function of S, P and n, i.e. H = l?(P, n, f?(P, n, T)), 
so that 

(45) 

where the superposed strip describes molar values for the given extensive property 
(F). By combining with fi, we get 

if(V,+ VB)= V,R,-TsA=GA= pA and P, = P = const., i-e_ P = 0, we have 

by eqn. (44) 

0 = (CPA + CPu)p + PASTA + p~fi~ - /.&fiv (47) 

which can be considered as the basic relation of our system. However, there arises 
the problem of how to treat the terms pi in an understandable enough way. Therefore, 
let us use the molar values4 but related to the sum of conservative components 



220 

(superscript c) as introduced by Holba as a convenient mean for the description of 
non-stoichiometry3 ‘. Hence assuming the transformation of the type 

ijv(A) + ij(B) + vt (*) (48) 

where i and j are two conservative components of phases A and B and v is the volatile 
component (superscript v). For nc = Zi + c 

c,,/rz& Ni = nA/n& N’ = tziJrzc, 
?zi = ni + nj we have for example c$ = 

etc. These parameters are stable regardless of the 
mass lost during dissociation except for the volatile part. Introducing the degree of 
transformation e which expresses the portion of phase A converted to phase B related 
again to the sum of conservative components for any extensive parameter, we have49 ’ 

Y” = Y”,(l - 0 + YE r (49) 

where 

5 = ni[nc = 1 - nilno (50) 

Assuming, for example, the fluxes in the form of hi = ZLiQz~ + ZN$; (e.g. II’; = 
ii@“, + Nirii) together with eqns. (49) and (50), we obtain after some algebraic 
manipulation4 

The first three lines of this equation describe the thermal development of the states 
of the individual phases A and B and (*) while the last Iine expresses the entire change 
occurring due to the transformation of A into B. For a better explanation of its 
physical meaning, let us rewrite eqn. (51) in the following form4. 

[K,‘“(T, - T) + Kzd(T,4 - T4)]lrz" = 

+ 

(a) 

U-9 

(cl 

(4 

(4 

(52) 

where the individual lines describe the heat consumption due to: 
(a) specific heat flux between the surroundings and the sample, where K,‘* 

and Kf” are the sample heat transfer coefficients for conduction and radiation; 
(b) the change of the system temperature, where AC, is the difference between 

the specific heats of the initial phase A and product phase B; 
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(c) the change of the content of the volatile component in respective phases 
(called stoichiornetry); 

(d) the formation of product phase B (where AH,,_ is the effective enthalpy 
change) including the specific loss of the volatile component (AN”) by dissociation 
taking place during A + B transformation; 

(e) the redistribution of conservative components between the phases often 
called phase separation, where Api = pi - pi and 6 is a new parameter called 
extent of phase separation (normalized 0-6-O) by equation <(N’ - Nk) = (1 - 5) 

(N: - N’) = 6. 
This analysis shows that this system must also be described by help of 6 besides 

the previously introduced 5. Furthermore, it is worth noting that each mass flux is 
diffusion controlled3 ‘, i.e. is carried out across the interface (I) the area of which 
must also be introduced to our consideration as a necessary parameter describing, 
in fact, the energetics of phase A and B discontinuity. From this viewpoint, the set 
of constitutive equations (38) for this heterogeneous system takes up the form3g’ 4o 

E = f(C, 6, r, I-) 
6 = is<<, 6, r, T) 

1 = H(& 6, r, T) 

i- = +(S, S, I, T), 

where f is bounded with 5, 6 and T by nucleation-growth 
indicated in the form2gW 369 3g 
1 = &,uc,_(L 6 T) &,,(<, 6, T) 

(53) 

equation which is usually 

(54) 
Equation (54) is well known in the simplified shape of Kolgomorov-Johnson-Mehl- 
Avrami-Yerofeev equation3* 3 6, where the parameter 6 is not considered and the 
course of T is idealized (F = 0 or F = 4). 

Equation (52), although havin g a rather small practical applicability, well 
demonstrates the complex behaviour of a heterogeneous system and possible inter- 
connections between the individual parameters. It can be seen that the specific 
properties of such a system can be investigated by, for example, weight loss (TG) 
and/or evolved gas (EGD) measurements (AN”); compensation calorimetry (DSC) 
and enthalpiometry (AH,,_, 5f = q5 = const.), Calvet microcalorimetry (DCC) and 
other spontaneous heat flux measurements (Q, T # const.)32* 37, direct TA (T) 
and its derived techniques32* 3 7 as DTA measuring the temperature difference 

AT = (T - Lrerence) or even possibly high-temperature X-ray diffraction (6). This 
approach also yields the virtually new parameter 6 as an entire property of a multi- 
component heterogeneous system3’* 4o which, for advanced kinetic studies, ought 
to be incorporated into the calculation_ Consequently, for variant processes proceeding 
in two-phase region the values of < and 6 again contain the equilibrium parts4’, 
teq and Seq, compare eqn. (41). 

For the actual interpretation of TA curves, Holba6 thoroughly analyzed the 
relations between the change of a measured extensive property 2 and the state of the 
sample. For the transformation of the type eqn. (48) he assumes the state of the 
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sample to be dependent upon the degree of conversion < [eqn. (50)], temperature T, 
pressure P, partial pressure of volatile components p,‘, total chemical composition 
N’ = lzi/ltc and composition of product condensed phase B, NA, i.e. Z = Z(T, P, 
p;, N’, NL). Using eqn. (49) for N’ and the derived derivative for fib we can write 
for the rate of the change of a measured extensive property Z6 

+ az= Ft azcp + azc az= A_ nc 

aT ap 
-@B’;.+--+ - 

ad ax I (53 

where Zc = Z/ lzc and X mean, in accordance with the above symbolic, any additional 
intensive parameter varied from the surroundings. The term AZ’ = 2; - Z; is the 
integral change of Z’ due to the transformation. The following term which is also 
multiplied by f is of similar meaning as the extent of phase separation in eqn. (52e). 
The primitive proportionality &’ = II~A~“~~, often used in TG, holds, however, in 
the case of daltonides only, i.e. the constant stoichiometry of phase A and B. For a 
practical use of eqn. (55) it is necessary to assume that the values AZ’ and aZ/i3X are 
not constant but dependent upon the state of the sample. To express their instantane- 
ous values, it is possible to employ Taylor’s expansion in the vicinity of equilibrium 
points of the transformation6, e.g. T = T, + AT, p,’ = pt + Ap’, etc., where AT 
and Ap’ have the meaning of the deviation of the sample temperature or partial 
pressure from those in the surroundings (*). 

Chapter 7 

DISCUSSION 

The importance of thermodynamic relations as elementary rules to be applied 
in theoretical TA has already been stressed in an earlier review3. The present exten- 
sion with the heating rate as an independent parameter and, particularly, the inclusion 
of electromagnetic and mechanoelastic measurements comes within the theoretical 
scope of TA description and is also required with respect to the individual methods 
classification although, for illustrative purposes, it is still idealized. 

It is the matter of mathematical manipulation to extend the above two-para- 
meter description, see Chapter 4, by additional parameters, which is most often P 
alike always accounted T. For instance, by a mere combination of individual terms in 
eqns. (23)-(26), we can achieve a generalized relation for N in the form of N = 
W, X WY p, 0. 

dH = V(1 - TaJdP + (Y - TaJdX + C,dT (56) 
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This equation clearly illustrates the possible interdependence of externally controlled 
parameters. It can be seen that the originally used symbols of heat capacities, as 
exhibited by eqns. (23)-(26) and Table 2, and unusually defined under either constant 
p, X, E or F, may now be identified with the classical C,, compare eqn. (13). An 
analogous result can be reached for the generalized Clausius-Clapeyron equation 
(Table 2) using the plausible extension to three- or multi-variable relations. 

Attention should now be paid to the possibility of practical utilization of the 
previously listed equations. Above all, it may be the direct numerical extraction or 
tabulation of the standard enthalpy and/or free energy changes. By approximating 
the material coefficients in eqn. (56) as, for example, LX, = a, + b,T and the heat 
capacity as Cp = a, + b,T + cc/T’, and after substitution and integration we obtain 

AH = AH, + AV(l - Aa,T2/2 - Ab,T3/3)(P - PO) t 

+ (AY - Aa,T2/2 - Ab,T3/3)(X - X0) + 

+ [Aa,T - Ab,T2/2 - AcJT];,, (57) 

or, for A@ = AH - TAS, the last term of the right-hand side of eqn. (57) being 
altered to 

[Aa,T(l - In T) + Ab,T - Ac,/2T2]~,. 

These functions are not in a sufficiently convenient form for 

nor does the second term on the right-hand side of eqn. (57) have 
standardization* 
any applicability 

except in the special determination of boundary curves in eIectromagnetic or mechano- 
elastic system, cf. eqn. (28). Moreover, the partial derivative of @ with respect to IZ 
does not provide the convenient parameter ,v, so useful in the standard description 
of equilibria**. Hence, let us restrict our attention to the ordinary AH and AG 
functions and their most frequent use when constructing phase diagrams by the direct 
determination of either characteristic temperatures or the heats of fusion for a given 

composition X. For instance, modifying the Clausius-Clapeyron equation into the 
form of the Le Chatelier-Schrederer equation 

* The choice of standard state is solely a matter of convenience for ease of calculation and should 
not affect the resulW J2. So it may be To = 298 K, PO = 1, Xo = 0, etc. The proper selection of the 
consistent units should be noted, e.g. AH (cal mole-l), ACT (cal K-l mole-l), AS (e-u.), A V (cal 
bar-l = cm3/41,84), etc. 

** This, of course, can be helped by introducing an additional parameter II into eqn. (16) thus 
yielding the desired term pdtz (and a@/&~ = cc). as the additional term of eqn. (17). Presumably this 
would be more convenient in everyday thermodynamic practice 25 but it is not consistent with our 
simplified approach to use exclusively the intensive parameters as variables in &- 
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A+- TA-- T++-)] 

AC, 2 
[ ( 

1 

T,T 

(58 

where Ti and T are the temperature of fusion and of the system, respectively, and 

AH, is the change of standard enthalpy at TA_ Practical applicability and common 

simplifications were surveyed by, for example, Adams and Cohen43. Assuming ideal 

behaviour, the most popular simplification employs only the first term of eqn. (58), 

plotting In -VA versus l/T to obtain a straight line the slope of which yields the enthalpy 

of fusion AH,. On the other hand, if known, this equation may be used to 

give the ratio of the activities instead of XA We also should not forget the possibility 

of using the Hess and Kirchhof additive laws as convenient means in all cases where 

experimental difficulties in the direct determination of the state functions occur. 

Let us now consider a typical TA recording in Fig. 8 to demonstrate the type 
of information that can be extracted. First of all, we may look for thermodynamic 
quantities. From the base line we can read the thermal development of the measured 
property 2 as well as non-thermal progress if an additional external parameter is also 

z T d-0 

heating(+) 
____---. 

l 

supCheated 
METASrABLE A 

Kinetics 

I undercooled 

Fig. 8. Graphical illustration of a TA record with regard to possible ways of data selection. The 
rectanguular solid line reflects the development of equilibrium (background) of the phase trans- 
formation (A+B) of invariant type assuming an infinitesimal temperature change (Cf. Fig. 5, Ii,)- 
The possible distortion of its rectangularity (I-shaped and/or diffuse-like phase transformatiorS6* 2;) 
due to fluctuations of concentration, magnetic moments or temperature etc. is not accounted for 
here (see ref. 14). The horizontal liner-like parts correspond to the base lines representing the change 
of system state if no reaction occurs. The actual (S-shaped) course of the TA curves for different 
heating rates 41, 42, $3, is caused by the time relaxation process necessary to reach equilibrium, 
called kinetics. 
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time-temperature dependent. The displacement of base lines gives the integral change 
of the measured property but its equilibrium value can only be achieved by extra- 
polation to zero heating rate or by recalculation using eqns. (29) and (30) when 
dealing with the enthalpy change, or by using analogous forms for any non-thermal 
property. IIowever, one should be careful over the correct interpretation of DTA 

measurements3” 31 ccf. eqn. (37)J in ordinary dynamic calorimetry32* 37. Equi- 
librium temperatures can also be obtained by extrapolation to zero heating rate. 
In determining its equilibrium values, there always remains a certain error proportional 
to the temperature gradient44-46. This was quantitatively estimated by Proks4’ 
and reduced in practice by, for example, using thin layers of investigated materials 
spread over the large surface of a well conducting sample holder shaped, for example, 
in the form of multiplate crucible46, already convenient for TG measurements. 
Beside this error due to quasi-stationary gradients, there can arise an additional 
(kinetic) delay caused by the impingement of interface energetics of new phase 
formation which is commonly associated with the effect of superheating and/or, 
most probably, supercooling. This is already connected with the second type of data 
to be evaluated from TA records: kinetics and mechanism of the process. The 
logistics of this procedure were briefly touched on in eqns. (38)(40) and its entire 
mathematics have been presented with full details elsewhere3. Some notoriously 
discussed and yet unclear points of view, however, are discussed in the form of 
questions and answers in a subsequent critical review47. 

In conclusion, it should be noted that truly equilibrium thermodynamics 
cannot be completely sufficient to describe correctly the real dynamic features of TA 
experiments because even steady temperature increments may give rise to non- 
equilibrium states, cf. Fig. 6. In other words, the state functions, similar to those used 
above, must be considered as functions of the space coordinates and time. Kluge4* 
has produced a nice approach for generally solving and interpreting the basic differ- 
ential equations for the independent state fields (e.g., temperature, density, concentra- 
tion, etc.). This has already received attention in kinetics in the determination of 
the decisive dimensionless parameters such as diffusion coefficient, rate constant, 
activation energy, etc. 4g Such new, actually non-isothermal approaches to non- . 

isothermal kinetics3 ‘* 4g* So are a good guarantee of a promising theoretical future. 
It can be anticipated that the development in theoretical TA will also be affected by 
flux methods as pioneered by Sestgk et a1.4* ’ and matured in stating the fundamental 
equation of TA in the form (cf. Chapter 7)” 6. 

e =ri+PV--lli--~-E~-F~+fyA+~oC (59) 
heat interaction with = response change of the state of TA system 
the surroundings (according to type of TA method) 

The additional work terms, such as rA and cpC, can be chosen according to the type 
of TA in question, e.g. emanation TA, where A, y, C and cp are the surface area, 
interfacial tension, surface curvature and curvature coefficient, respectively (which 
would bring desired attention to the surface chemistry, in this article intentionally 
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underestimated). A definite 3ut not yet easy aid for the near future can be sought in a 
more concise framework of rational thermodynamics’ 5 - * ‘. 

AUTHOR’S NOTE 

In some aspects, the nomenclature employed throughout this article slightly 
but intentionally deviates from the nomenclature recommended by ICTA (see four 
reports of ICTA nomenclature committee published, for example, in the Proceedings 
of ICTA Conferences). It was found necessary from the point of view of theoretical 
TA but it should be stressed that, so far, it is restricted to this article, having no general 
validity. The notation of the most important, and thus recommendable, basic terms 
are denoted in the text by the italic Iettering. In our attempt to present a concise list 
of symbols suitable in theoretical TA, some replacement of individual symbols may 
also be found more convenient as, for example, heating rate a or p, compressibility 2, 
defdrmation e, stress cr or r, force F, etc. 
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