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ABSTRACT 

A least squares curve-fitting method was developed for the following thermo- 
analytical problem: “Find the kinetic parameters and the unknown initial amounts of 
the reactants from non-isothermal theimoanalytical curves in the case of two or more 
independent or quasi-independent thermal reactions”. From a numerical point of 
view this problem differs from the non-linear least squares techniques used in other 
areas of reaction kinetics. The special difficulties which have arisen in such calculations 
were eliminated by parameter transformations and by separating the linear and non- 
linear parts of the problem. The method can be applied at any T(t) functions. Thermo- 
analytical curves differing in temperature program can be evaluated simultaneously. 

INTRODUCTION 

In this paper those non-isothermal thermoanalytical examinations where the 
measured effect is produced by independent or approximately independent reactions 
will be considered. 

Let xi be the reacted mole fraction of the jth reaction and let us suppose that 
each reaction satisfies a kinetic equation of the following form 

dXi/dt = kj(T) fj(Xj) (1) 
where kj(T) is the rate constant andfj(xj) is an arbitrarycontinuousfunction. (Forfj 
functions see, e.g., ref. 1 or 2). Let X(t) and DX(t) stand for thermoanalytical curves 
of integral and differential type, respectively. For the commonly used thermo- 
analytical techniques X(t) and DX(t) depend linearly on Xj or dxj/dt 

X(t) = 2 Cj Xj(t) 

DX(t) = 2 ci dxJdt (3) 

Here, coefficients ci are the initial quantities of the reactants multiplied by such 
factors as the reaction heat (if DX = DSC), or the molecular weight of the volatile 
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product (if X = TG). In many important practical problems the cj coefficients are 
unknown and the primary aim of the thermoanalytical investigations is their determi- 
nation. Other unknown parameters are the Aj pre-exponential factors and the Ei 
activation energies. 

Thefj(xj) functions may also contain unknown parameters, e.g., when they are 
formally approximated by a power function 

fj(Xj) = (1 - xi>” (4) 

Equation (4) is frequently used with unknown ni in such cases when the geometry of 
the reaction surface is too complex to derivefj theoreticaily. 

If the reactions considerably overlap, the thermoanalytical curves do not 
provide experimental xi or dx,/dt functions. Thus the ci values cannot be read 
directly from the curves and the kinetic parameters cannot be determined by the 
methods used in the kinetic analysis of single reactions. In this case least squares 
curve-fitting should be applied to find the kinetic and cj parameters. 

PRELIMINARY DISCUSSION . . 

Let Xobs, DXobs, Xcaic and DXca*’ stand for the observed and calculated thermo- 
analytical curves. We shall look for those parameters at which either 

s, = 2 CXobs(tJ - Xc=*yti)]2 

or 

s DX = C [DXobs(ti) - DXca1c(ti)]2 

(5) 

(6) 
is minimal. 

In this minimization the following problems arise. 
(i) The Sx and S,, surfaces are non-convex and frequently have physically 

meaningless partial minima. Thus the computation method should be constructed in 
such a way that the user could easily find good initial values for the unknown para- 
meters. 

(ii) During the minimization the true minimum can be reached through 
narrow, slightly curved valleys on the Sx or S,,, multidimensional surfaces. This fact 
makes the minimization difficult, since the direction of the steps should be chosen 
extremely carefully. However, this problem can be easily eliminated by proper para- 
meter transformations. Without these transformations minimizations (5) and (6) can 
hardly be carried out, even in the single reaction case. 

Besides the above aspects, partial attention should be paid to keeping the 
complexity of the computer program within acceptable limits. Thus it is worth using 
simple, direct search methods in the minimization to avoid gradient determination or 
multidimensional interpolation problems. In consequence of the high performance of 
the present computers, simple direct search techniques may be quite suitable for 
handling complex least squares problems3* 4. 
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A SUITABLE COMPUTATIONAL SCHEME 

The approximative solution of eqn. (1) can be easily obtained at any given set of 
kinetic parameters. The variables are separable and the lk,(T)dt integrals can be 
easily evaluated at any T(t). At any given set of xi(:) or dx,/dt, curves Sx and SD, are 
linear functions of parameters ci. This fact suggests the following computational 
scheme. 

Let vector p denote the kinetic parameters. The computation starts at some 
initial p vector. Equation (1) is solved to obtain the corresponding X&I, t) or 
dxj(p,t)/dt xj(p, t) functions. Using the linear least squares method we find those 
ci values at which 

sX(P) = 2 CXobs(ti) - 2 cjxj(P, ti)12 i i 
(7) 

or 

SDX(P) = 2 [ DXobs(ti) - 2 Cj & Xj(P, ‘d] 2 
i i 

(8) 

is minimal. We change p systematically by a suitable algorithm and choose that p at 
which the minimization by parameters ci gives the smallest S, or SD, value. This 
method has the following advantages: 

(i) the number of unknowns in the non-linear least squares minimization is 
smaller; 

(ii) there is no need for initial ci values. 
Similar computational schemes are frequently used in the numerical analysis. 

TRANSFORMATION OF THE KINETIC PARAMETERS (I) 

In this section those cases when thefj(xj) functions do not contain unknown 
parameters will be considered. For the sake of simplicity we shall speak about the 
“peaks” of the thermoanalytical curves, although the proposed formulae are also 
valid for integral thermoanalytical curves. 

Roughly speaking, at givenfj(xj), Ei and Aj define together the position and the 
width of thejth calculated curve. Through parameters ci we choose the heights of the 
peaks to be optimal at each set of the Aj and Ej parameters. 

Test calculations have shown that the finding of the optimal positions and widths 
of the peaks becomes relatively simple and efficient if we apply a parameter transfor- 
mation which provides for each peak: 

(i) a parameter shifting the peak left or right without changing its width; and 
(ii) a parameter changing the width of the peak without affecting its position. 
Let xi be a certain fixed value, say 0.5, and let ?; be the time at which xi(t) = xJ. 

fJ will be the parameter which defines the position of the jth peak. At given t; the 
energy of activation defines the width of the peak: smaller Ei values represent wider 
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peaks and higher Ei values represent narrower peaks. Thus the second parameter will 
be Ei. At given t:_ and Ej, the corresponding Aj can be determined through the 
following form of eqn. (1) 

In the following part of this section the question of the initial parameter values will be 
considered briefly. Having some practice in such calculations, good initial ti values 
can be estimated simply by the eye. If somebody prefers reading the position of the 
peak maxima on the measured curves, then such x(i values should be chosen which 
correspond to the peak maxima. Here the results of Horowitz and Metzger’ and 
Gyulai and Greenhow can be applied. However, in the case of non-linear T(t) or a 
sophisticated fj(xj) function, the relationships between the position of the peak 
maximum and the corresponding kinetic parameters may become hopelessly sophisti- 
cated. In this case the choice of the x; values depends on the user’s experience, 
intuition and taste. As regards the initial Ej values, it is worth underlining that too 
low Ej values may result in highly merged peaks and from this the program can 
converge to false minima. If the user prefers a geometrical characterization of the 
peak width rather than givin, 0 initial Ej estimations, then the transformation described 

in the following section may be used. 

TRANSFORMATION OF THE KINETIC PARAMETERS (II) 

In this section those cases when each of thefj(xj) functions may contain an 
unknown parameter will be considered. Let us denote these parameters by n,-. If 
eqn. (4) is used, ni are the formal reaction orders. 

Let xJ and xi (x; < xJ be some tied values Of Xj, for example, 0.3 and 0.6, and 

let tJ and f; be the corresponding time values. As before, t; will be used to characterize 
the position of the peak. However, in this case Ej cannot define alone the width of the 
peak at fixed t;_ Thus a more direct characterization of the peak width, the dtj = 
f: - f; difference, will be chosen as the second parameter. Roughly speaking, a third 
independent parameter can affect only the degree of asymmetry of the peak at fixed 
2; and dfi. For convenience nj will be chosen as the third independent parameter. 

At given ti, dtj and nj, the corresponding Aj and Ei values can be determined in 
the following way. Let gi(xj) and Z”(t) stand for integrals 

xj r 

s 
dxi/fi and 

s 
eBEJfRT dt, 

0 0 

respectively, and let us write eqn. (1) in the folIowing form 

SjCxjl = Aj Ij Ct) (10) 
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Hence, gi(x:) = Ai lj(Z~), gj(X;) = Aj 1j(r’;) and 

gj(X;.)/gj(XI;.) = I j(‘;-)/r j(t~) 
(11) 

At linear T(t), Ii(t) is a product of e- &IRT with a nearly-constant factor, thus eqn. (11) 
can be written in the form’ 

ln gj<$> =q+-+) 
gj(x;) - R 

(12) 

Here 7” = T($) and TJ = T(t(i’). At hyperbolic T(t) eqn. (12) becomes exact. 
At other types of T(t), eqn. (11) should be solved numerically. Note that Zj 

depends on Ej roughly exponentially at any T(t), thus it is worth solving the logarith- 
mic form of-eqn. (11). Having Ej on hand, Aj can be obtained through eqn. (9). 
The transformation of Aj and Ej into ?J and dtj can also be used at fixed nj values. 
In this case the minimization by the f: and dfj parameters is practically equivalent to 
that by the t; and Ej parameters. To illustrate this let us rearrange eqn. (12) using the 
d(l/T) = -d7’/T2 relation 

Here Ti is the average of 7’; and T;_ Equation (13) shows that at linear or hyperbolic 
T(t) and fixed ni, Ei is inversely proportional to dtj. 

LEAST SQUARES EVALUATION OF MORE THAN ONE THERMOANALYTICAL CURVE 

During the kinetic evaluation, three to four parameters (cj, A, Ej and, if any, 
nj) should be determined for each reaction. However, if the overlap is too strong, one 
thermoanalytical curve might not contain sufficient information for the determination 
of these parameters. In other words, it may arise that several parameter sets provide 
equally good fit between the calculated and the observed curves. If this problem 
emerges, more thermoanalytical curves should be involved in the calculations_ 

These thermoanalytical curves may differ in the initial concentration of the 
reactants as well as in the temperature program. If the thermoanalytical curves in 
consideration have the same T(t), their simultaneous evaluation may be carried out by 
the same method as that for the single ones. At different temperature programs the 
following treatment can be applied. 

Let m stand for the serial number of the measurements_ We look for those cj, 
A, Ej and, if any, nj, which minimize one of the following sums 

Sx = 2 1 [Xgbp’(ti) - Xz’c(tJ]2 (14) 
m i 

S DX = 2 2 [DX","'(ti) - DX~'C(ti)]2 
m i 

(15) 

(The terms in eqns. (14) and (15) may be multiplied by suitable weight factors). As 
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the ci parameters can the linear for 
of kinetic parameters. At fixed fj(xj) the position peak at 

different temperature programs the corresponding Aj and Ej. This immediately 
suggests that in the non-linear least squares minimization the peak positions would be 
varied directly instead of Aj and Ej. Let I and II stand for two different temperature 
programs. Let xJ and xfi’ be some fixed values and let xi(tJ) = xi at temperature 
program I and xi($) = xy at temperature program II. The ?j and 27 values which 
characterize the position of the jth peak at two different temperature programs will 
be used in the non-linear least squares minimization instead of the Aj and Ei values. 
At fixedfj(xj) they define Ej and Aj through the following equations 

Aj = gj(X~)/Zfct3 (17) 

Here the superscripts on li indicate the T(t) function at which the integration is 
carried out. 

At linear temperature programs eqn. (16) may be simplified in the same way 
as eqn. (11) (see, e.g., ref. 7). 

In &j(Xli) N gj 

a”gj(xy) - R 
--- (18) 

Here a1 and a” denote the heating rates. At hyperbolic temperature programs eqn. (18) 
becomes exact. At other types of T(t) the logarithm of eqn. (16) should be solved 
numerically. 

The (Aj, Ej) + (t$ ty) transformation has also proved useful at unknown ~Zj. 

PROGRAMMING 

The following three parts of the calculation can be carried out by commonly 
available “library” subprograms: 

(i) the solution of the logarithmic form of eqn. (11) or (16) in case of general 
T(t) functions; 

(ii) the linear least squares determination of the cj parameters and the calcula- 
tion of the corresponding S values; 

(iii) the minimization in the non-linear least squares method. 
Note that the solution of eqn. (1) can also be carried out by a Runge Kutta or 

predictor-corrector subprogram. However, in the case of linear or hyperbolic T(t) 
it is more economic to compute the solution directly from the equation 

Xj = gf’[Airj(t)] (19) 

where g; 1 stands for the inverse function of gj_ FormuIae suitable for the high 
precision calculation of integrals Zj(t) have been treated in a previous paper*. Equation 
(19) may also be useful at general T(t) functions. 
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In this way the programming is relatively simple and the resulting program can 
be run on minicomputers of 64 K bytes of total memory. With careful programming 
the required memory can be diminished below 32 K bytes and the computation can be 
carried out on “desk-top computers”. For example, if we use a library subprogram, or 
the modification of a library subprogram, for the linear least squares determination of 
the ci parameters, then the matrix of the xj(t& or dxj(tJdt values should be stored 
until the calculation of the ci values. The storage of these matrices can be avoided if 

the coefficients of the normal equations are determined simultaneously with the 
ci(ti) or dxj(ti)/dt values, and if S is computed from the normal equations and the 
obtained ci values. 

NUMERICAL EXAMPLES 

Two hypothetical thermoanalytical curves (curves I and II) were constructed 
and evaluated. They differed only in the heating program. 

Two independent reactions were considered: 

E, = 35 kcal mole- ’ E2 = 40 kcal mole-l 
A, = 4.90 X 1Or2 min- ’ A, = 3.88 x IOr min-’ 
n, = 1 112 = 1 

cl = 50 Ct = 50 

These parameters were chosen in such a way that at a usual linear heating program a 
DX curve should consist of highly overlapping peaks. 

To calculate curve I a linear T(t) with a heating rate of 4” min- ’ (temperature 
program I) was used. The resulting DX curve is shown in Fig. 1. 

DX 

c 

Fig. 1. DX curve at heating program I between 240 and 380°C. 

Fig. 2. DX curve at heating program II between 240 and 380°C. 
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A DX curve of a rather different shape can be obtained by inserting an isotherm 
section in the temperature program. Thus temperature program II was constructed in 
the following way 

(i) linear heating with 4” min- ’ rate up to 270°C; 
(ii) an isotherm section of 30 min at 270°C; 
(iii) linear heating with 4” min- ’ rate up to the end of the degradation. 

At 270°C reaction 1 has about 12 times higher rate than reaction 2. Thus the majority 
of reactant I gives out in the isotherm section while the amount of reactant 2 prac- 
tically .does not change here. The resulting DX curve (curve II) is shown in Fig. 2. 

For the evaluation of the curves, DX(ti) values were taken every 30th second 
between 240 and 380°C. 

Since real thermoanalytical curves always have experimental errors, random 
numbers of Gaussian distribution were added to the DX(ti) vaIues. The deviation of 
the random numbers was 0.05. This value corresponds to 1.75 and 3.25 oA relative 
deviation at curves I and II, respectively. (The average DX value is about half at 
curve II than at curve I, see Figs. 1 and 2). When the curves were evaluated simul- 
taneously, the calculations were repeated with double greater deviation. 

The simulated DX(ti) data were evaluated in the following calculations: 
(i) finding AJ, EJ and q (3 = 1,2) at fixed nj by the separate evaluation of curves 

I and II; 
(ii) finding Al, Eg and cj at fixed q by the simultaneous evaluation of curves I 

and II; 
(iii) finding AJ, E’, nj and q by the separate evaluation of curves I and II; 
(iv) finding Aj, Ej, q and ci by the simultaneous evaluation of curves I and II. 
The results are shown in the Table 1. The first two columns refer to the temper- 

ature program and the simulated measurement errors of the evaluated curves. The 
other columns contain the error of the obtained parameters. It can be seen that the 
precision of the obtained parameters is slightly better at curve I than at curve II. This 

TABLE 1 

THE ERRORS OF THE OBTAINED PARAMETERS 

Each row corresponds to a separate calculation. The first column indicates the curves evaIuated in the 
given calculation: the second column shows the deviation of the simulated measurement errors; 
the other columns contain the absoIute values of the errors of the parameters. 

T(t) 0 &I 6log A 6E 6C 

I 0.05 - 0.13 0.16 0.6 
II 0.05 - 0.20 0.50 0.6 
1+11 0.05 - 0.06 0.17 0.08 
1tII 0.10 - 0.12 0.30 0.08 
I 0.05 0.03 0.50 1.37 1.8 
II 0.05 0.04 0.55 1.57 3.3 
IfII 0.10 0.03 0.33 0.88 1.6 



375 

fact seems surprising since temperature program II provides far better resolution for 
the two reactions. (The first half of the curve is dominated by reaction 1, while the 
second half of the curve is dominated by reaction 2). However, the average height of 
curve II is smaller than that of curve I, and in this way the simulated errors have 
higher relative deviation (3.25%). However, temperature programs of this type may 
have great importance in checking whether the examined reactions are really in- 
dependent. For example, in the case of competitive reactions inserting the isotherm 
section would have considerably diminished the size of the second peak in Fig. 2. 

The calculations were carried out on a CDC 3300 computer. The computing 
time varied between 1 and 5 min. Considering the relatively low speed of the applied 
computer (an old, second generation type) these times seem reasonable. The obtained 
fits were good. The obtained mean square deviations differed only slightly from the 
mean square deviation of the simulated errors. By choosing deliberately wrong 
initial values for 
obtained. 

APPLICATIONS 

the parameters, false minima and very bad fits could also have been 

The kinetic evaluation method presented here has been developed over a 
period of two years. During this time about 140 DSC, TG and TG-MS curves were 
evaluated in this way, mainly in industrial research. The majority of these calculations 
belong to the DSC examination of metallic alloys. The corresponding results will be 
published soon. Another topic of application was the thermal analysis of surfaces in 

catalytic research. 

LIST OF SYMBOLS 

a 

4 
=i 
DX(O 

ilj(Xj) 

gj-’ 

lj(t) 

heating rate 
pre-exponential factor 
a factor associated with the initial concentration of reactantj. 
a thermoanalytical curve of differential or derivative type (DSC, DTG, 
MTA) 
energy of activation 
the conversion depending part of the rate equation 

Xl 

s 
d+!fj 

0 

the inverse function of gi 

I 

s e --EdRT & 

0 
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