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ABSTRACT 

A semi-empirical equation for self-diffusion coefficient determination has been ob- 
tained using square well potential theory modified by a temperature correction function, 
[= exp@ + qT), where p and q are empirical constants. The proposed equation compares 
well in overall accuracy with the experimental data and other selected prediction methods 
over the complete range of investigation (13 compounds, 82 data pomt sets). 

INTRODUCTION AND PERTINENT EARLIER WORK 

Focusing around the ratio Dq/T, where D is the selfdiffusion coefficient, 
77 is the coefficient of viscosity and Tis temperature, K; an array of relations 
have been established between the self-diffusion coefficient, the viscosity 
and the density p of hquid (see references 5,9, 14, 19, 20, 24-30, 33, 38- 
46, 50-52, 59, 60, 63,68, 69, 77, 79,80 and 84). 

The oldest among these relations are those derived with the help of ele- 
mentary hydrodynamic theory. Following the early work of Stokes [79], 
Fick 1301, Nernst 163 1, Bassett [5 J, Einstein [ 241 and Sutherland [80], it is 
possible to obtain a connection between the diffusion coefficient of a solute, 
D,, and the shear viscosity of a solvent, TV, as 

Rx _ 1 1 + 3%/13a - - 
kT 6x’ 1 + 2_rl,/fla 

(1) 

where h is the Boltzmann constant, a is the radius of the diffusing molecules 
and p is the coefficient of sliding friction which depends on the size of the 
diffusing molecules, that is the magnitude of radius a. Since p has physical 
meaning only between the values of fl= 0 and /3 = m, eqn. (1) yields the fol- 
lowing two limiting cases: 

(a) Fluid does not slip over the surface of the diffusing spherical molecule; 

hence p = a, and eqn. (1) reduces to 

D,v~, _ 1 --- 
kT 67ra 

(2) 

Relation (2) is the so called Stokes-Einstein equation Since /3 = 00, eqn. (2) 
should descnbe diffusion of large spherical molecules in solvents of much 
smaller molecules. 
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(b) Fluid slips completely over the surface of the diffusing spherical mole- 
cule. In this case, /3 = 0, and eqn. (1) yrelds 

Dsqs _ 1 --_ 
kT 47ra 

(3) 

Because of the imposed complete slippage condition (p = 0), it is expected 
that eqn. (3) w-ill correlate better for diffusing molecules which are slightly 
larger than or about equal to the solvent molecules. As a matter of fact, if 
solute and solvent molecules are of equal size we may assume that eqn. (3) 
is directly applicable for calculation of liquid self-diffusion coefficients *_ 

Li and Chang [50] set 2a = ( V/N)1’3 in eqn. (3) and obtained the follow- 
ing relation to describe self-diffusion 

(4) 

where V 1s the molar volume of liquid and N is the Avogadro number. Li and 
Chang [50] suggested that eqn. (4) is valid for liquids whose structure is the 
simple cubic packing of spherical molecules, with all moIecules just touching 

On the other hand, the same functional form [eqns. (3) and (4)] follows 
from the principles of the absolute rate theory 1351. As a matter of fact, in 
its simplest form, the Eyring self-diffusion equation [35] is 

Dv A, -- = -_- 
I:T &A3 

(5) 

where h, is the distance between two adjacent layers of the fluid molecules, 
while X1_ and h3 are the distances between two nelghbouring molecules in a 
layer perpendicular to and in the direction of motion If we set X, = XZ = X3, 
then it can be proved that 

Putting eqn. (6) in eqn. (5), we have 

(6) 

Equation (7) gives values for the self-diffusion coefficient D which are too 
high by a factor 37r and 2~ respectrvely when compared with eqns. (2)-(4). 
There has been a flurry of modifications proposed to remedy this situation; 
for instance, Li and Chang [ 501. However, at this point it will suffice to note 
that while discussing the significant structure theory of liquids, Eyring and 
March [28] mtroduced the configurational factor t in eqn. (7), so that 

The introduced g-factor did bnng the calculated self-diffusion coefficient 

* For crltlcal discus regarding the vahdity of these equations, refer to references 19, 
20, 25-27, 29, 33, JL, 39,40, 42-46, 68 and 69. 
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values into better agreement with esperimental data. 
McLaughlin [59,60] reevaluated eqns. (3) and (4) for a series of liquids, 

and found that in these equations mstead of the factor 2n one should use an 
empirical value of 2.035~ (mean vanation _+lO%). Hence, eqns. (3) or (4) 
may be rewritten as 

However, Dullien [20] having considered more systems and using slightly 
&fferent values for D, 71 and Q, found for the factor 27r an empirical value 
1.9n as compared with the McLaughlin’s value of 2.035~ [eqn. (9)]. Llel- 
mezs and Chan [ 521 obtamed a value of 1.92~ for the same factor: and so, 
using a much larger sample of experimental self-diffusion data over a range 
of temperature, affirmed Dulllen’s [ 201 finding. 

Dullien [ 201 however considered this empnical value of 5 27r for liquids to 
be fortuitous and independent of the fact that the Stokes-Einstein formula 
[eqn. (3)] for fi = 0 al so contams 2n for the numerical coefficient =. Yet it 
appears to us that further work m checking the changes in the values of this 
averaged factor may be in order especially if interpreted in terms of liquid 
structure and measurable physical parameters **_ Followmg Lamm’s 
[ 42-461 theoretical work =*4* Dulhen [ 19,201 proposed the following self- 
diffusion relation 

-IV NlzT = O-124 X 10-‘6V;‘3 (10) 

where V, is the critical molar volume. 
Equation (10) through the group DqV/NI,T is temperature independent 

(assumption listed by Dullien [19]). However, subsequently, Dulhen and co- 
workers [25,26] modified eqn. (10) to mclude temperature dependency as 

= -1.42 + 0.152c’” 

subject to the condllaon 

(12) 

* It has been shown (Stokes [79], Ahn et al [-I]; Ahn [3]) that considering the hydro- 
dynamic fluid flow conditions, the radius of the diffusing molecule [eqns. (l)-(3)] is 
insensitive to the liquid structural packing arrangements, and that comparison wrth the 
experimental diffusion coefficient values favors the slip limit of p = 0 This of course 
indirectly supports the use of predictive relations such as eqn (9), and the notion that at 
least for the simple flurds, one indeed could use an empirical factor such as 1 92; (Liel- 
mezs and Chan 1521) or for that matter, factor 2.035n, eqn. (9). 
** Note the introduction of the configurational factor, E, by Eyring and March [28 ] in 
cqn. (8). 
*** It is interesting to recall that friction coefficients found in Lamm’s [42--161 theory 
are the reciprocal of the mobihty in Nernst’s work [63]. 
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where d is the apparent molecular diameter, defined by Dullien [ 191 and 
Ertl and Dullien [25] as 

d = 2.24 (13) 

and &mn is the effective minimum molecular diameter of the fluid over a 
given temperature range 1251. The ration d/d,in is expressed in terms of the 
reduced temperature, T, = T/Z’, (Z’, is the critical temperature) as 

d 
- = 2.55 x 10-3T,-4 + 0.35T, + 0.179 
d 

(14) 
ml* 

Equations (ll), (12) and (14) should prove especially useful for tempera- 
tures of T, < 0.46 [25]. 

EQUATIONS DERIVED FROM HARD SPHERE AND SQUARE WELL MODELS 

The simplest dense fluid is the hard sphere fluid. The hard sphere fluid is 
characterized only by repulsive forces, and so this fluid has only fluid-solid 
transition (i.e. melting point). The transport properties of this fluid depend 
only on the radial distribution function at the point of contact of the hard 
spheres. In this case, the assumption of painnse additivity is exact, and the 
motion of hard spheres is described accurately by binary collisions, even at 
high densities. With respect to this background, and assummg that the spatial 
pair distribution function depends only on the temperature and density and 
that the velocity distribution function of a single particle is locally Maxwel- 
ban, Longuet-Higgins and Pople [54] developed an expression for the shear 
viscosity qhsr given as 

(15) 

where the subscript hs represents the hard sphere model, a is the radius of 
the diffusing hard sphere molecule, m is the mass of the sphere, and P is the 
pressure. 

Assuming further that the auto-correlation function for the velocity of the 
particle decays exponentially, they derived also the coefficient of self-diffu- 
sion for hard spheres, given as 

Combining eqn. (15) and (16), we have 

If we let c be the fraction of the total volume occupied by 
and if we assign the value c = 5/9, then eqn. (17) becomes 

&%a _ 1 _--- 
kT 6na 

(17) 

the hard spheres, 

(13) 
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Equation (18) is of the same form as eqn. (Z), the Stokes-Einstein relation 
with no slip condition over the surface of the diffusing molecule. 

On the other hand, eqn. (17) may be rewritten as 

Dh&s V 
NkT 

= $2 
(19) 

Equations (19) and (10) are functionally similar since they both possess the 
same group DqV/NkT, equated to a constant which is characteristic of the 
given fluid. If we introduce the moIecular hard sphere co-volume *, b,,, 
given as 

b,, = (2) nNa3 (20) 

b,, = (2 ) nNa3 = 2ti;a = (2)(0.376)& (21) 

where Vfi# and V, are the molar volumes of liquid at the normal boiling and 
at the critical points, respectively, then by using relations (20) and (21), we 
can transform eqn. (19) into 

Dhsrlhs v 
NkT 

= 0.070832 x 10-‘6c’3 (22) 

Equation (22) was essentially derived by following hard sphere fluid argu- 
merits. It is, however, of interest to recall that Dullien [19] empirically first 
derived *F 

WV -- = 0 107 x 10-‘6v2’3 
RT - c (23) 

and then refitted eqn. (23) to eqn. (10). 
In order to calculate the values of l)hs and D,._ [eqns. (15). and (16)], we 

let pressure P be defmed by the Percus-Yevick equation of state for hard 
sphere fluids [49,70] as 

P hs (24) 

where y = ($)po’; p is the number density of the fluid and 0 the collislonal 
diameter given as u = 2a [for instance, see eqns. (15), (16) and (19)]. 

Comparative calculation of self-diffusion coefficients for liquid CH4 at 
95.2, 100.0, 106.1 and 110.5 K by means of eqns. (9), (LO), (16) *X*, (21) 
and (22) showed the following average percentage error with respect to the 
experimental values (Table 2: eqn. (9): 3.2%; eqn. (10): 5.6%; eqn. (16): 
10.2%; eqn. (21): 42.2%, eqn. (22): 39.1%. The calculated self-diffusion 

* Note that the second virial coefficient is defined also as I32 = (16/3)5ra3. Hence it is pos- 
sable to prove that eqn. (17) is equivalent to the first approximation of the diffusion coef- 
ficient obtained by the Chapman and Enskog theory [54]_ 
** For further information regarding eqns. (10) and (23) see the work by Vadovrc and 
Colver [84] and the work of Tyn 1831. 
*** To obtain selfdiffusion coefficient Dhs values [eqn. (16)], we calculated first qns 
(eqn. 15) values whrch were then substituted into eqn. 16. All these calculations were 
done on the basis of the pressure, &.. of the hard sphere fluid [eqn. (24)] 
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coefficient values for all of these equations showed very poor temperature 
dependency. It should be noted that eqns. (9), (10) and (16) showed the 
accuracy expected for the relatively symmetrical CH4 molecule. On the other 
hand, eqns. (21) and (22) which were derived through the assumptions of 
the hard sphere model, could still be subjected to the empirical parameter- 
curve fitting adjustment techniques, and thus made more accurate [compare 
with eqn. (lo), see also Dullien 1191; Ertl and Dullien [25] 1. Additronally, 
eqn. (22) could be modified by means of empirically derived, temperature 
dependent correction functions. Whether this should be done with reference 
to the critical state properties [compare with eqns. (ll), (12) and (14)] 
remains a question of further work X. 

As noted, the relations derived rigorously horn the theory of hard sphere 
fluids [eqns. (15), (16) and (19)] d o not reproduce satisfactorily the temper- 
ature dependence of the self-diffusion coefficient showing questionable 
agreement between theory and experiment (see for instance work by McCall 
et al [ 571, Douglas and Anderson [ 171, Kessler et al. [ 411). As these equa- 
tions represent assemblies of hard spheres wrth no attractive force mterac- 
tions between constituent particles, they are in effect crude replicas of the 
real fluid, and so it is not surprising to find that these expressions provide 
rather a poor description of molecular transport in liquids. Longuet-Higgins 
and Valleau [55] recognized this, and replaced the hard sphere potential 
theory of Longuet-Higgins and Pople [ 541 by the more realistic square well 
potential model which in a rough way accounted for the attractive forces, 
which effect the transport properties at moderate densities of fluids. As 
such, the Longuet-Higgins and Valleau [55] extension of the hard sphere 
theory of Longnet-Higgms and Pople [54] is characterized by four types of 
binary collisions instead of binary colhsions at the contact of the hard 
spheres. Even at that, the smooth sphere with the square well potential, m 
effect being a monatomic simple fluid, omits the effect of the rotational 
degree of freedom in the description of the diffusional process. 

The zeroth order expressions fcr shear viscosity and self-dlffusivity 
denved by Longuet-Higgins and Valleu [55] are given as 

(25) 

,I 

I 
(26) 

where superscript “0” = zeroth order: subscript SW = square well potential; 

n? 1s the molecular mass; p IS the number density of the fluid, a* is the repul- 
sive radius of the smooth sphere; b* is the attractive radius of the smooth 

* While not discussed in this work, the Enskog theory of hard spheres (Chapman and Cow- 
ling [9], Longuet-Higgins and Pople [51], Dahler [14]) and the corrected form of Ens- 
kog’s theory (Dymond [21-231, Van Loef [85]) via the method of molecular dynamics, 

yield expressions relating the exact self-diffusion coefficients for dense hard sphere flurds 
to the molar volume and hence temperature Van Loef [85] has shown that for several 
simple liquids the calculated values agree with the experimental self-diffusion coefficient 
values over a considerable temperature range. 
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sphere; E is the depth of the attractive potential well; a, fl are the particular 
values of the equlhbnum pair number density in configurational space, pt. 
The function Z is 

(27) 

where K,(e/B!z?T) is the modified Bessel function of the second kind. 
To evaluate the required transport properties, one needs the molecular 

parameters of the square-well theory, CZ*, b* and E, and the corresponding 
values of (Y and fl of pair number density function. Indeed, eqns. (25), (26) 
and (27) represent the startmg point of the many studies of application of 
the square well model to transport processes [8,15,16,56,64,72,73] _ 

Proposed rela tlorzs 

The zeroth order approslmation of square well potentlal [eqns. (25)- 
(27)] by Longuet-Higgins and Valleau [55] was estended to a higher order 
approxlmatlon by Davis et al. [16] who introduced a modified hla~~vell- 
Boltzmann integro-differential equation valid for dense squ,are well fluids 
interacting with the pan- potential V(r,,) as 

V(r,,) = 0 ; I-,, > c7- 

V(f-,,) = -E ; 0, < r,, < 02 

V(r,, ) = +of : I-,, S ~7, (2s) 

where ri, 1s the distance of separation of particles i and 1, CJ, 1s the hard 
sphere (or repulsive) diameter, oZ 1s the diameter measuring the range of the 
square well attraction, or the attractive diameter. 

TINS Davis et al. [16] derived modification of the ~I~~~~ell-Boltzmall~~ 
integro-differential equations was esamined by Davis and Luks [ 151 who by 
means of an approsimate pair correlation function obi,ained an espresslon 
for shear vlscoslty as 

+ ;$w)‘(g(o,) + RJg(a2) Z) 

where R = u2/al, b = 2~0:/3; p is the number density g(a,) IS the equilibrium 
radial distribution function for r12 = oI + 0 (evaluated just inside the well). 

g(a,_) is the equilibrium radial distribution function for r17_ = CJ: + 0 (evalu- 
ated just outside the well). 
The function $, however, is defined as 

e --’ 2 dA- ) (30) 
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while function [3] is given now [compare with eqn. (27)] as 

(31) 

To obtain the expression for the self-diffusion coefficient, Davis and Luks 
[ 151 used the results of Longuet-Higgins and Valleau [ 551 and rewrote eqn. 
(26) as 

D [g(o,) + R2g(o,) E] -’ (32) 

Luks et al. [56] have given the value of the J/ and Z functions [eqns. (30) 
and (31)] in terms of the arguments (E/~T) and (e/kT)1’2. Using the given 
argument values [ 561, we expressed the functions $ and Z as polynomials m 
their own arguments, and by means of least squares curve fitting techniques, 
obtained 

rl/ = -4.07238 x 10-l ? 5.42382 x 1O-3 
[( a”=1 

- 3.25477 \’ lo-’ -+ 2.14225 X 1O-4 
K&no 

(33) 

Z = 7.53430 x lo-” 2 8.12495 x 10-j (&)’ 

+ 9.86055 X lo-? + 4.11847 X 1O-4 (&)” 

+ 2.51934 x 1o-3 f 4.91302 x 1o-S 
( ) 

CT 
6 

(34) 

The variance for the given function is 1.75 X 10S5 for eqn. (33) and 2.95 X 

10S4 for eqn. (34). To estimate the values of g(ol) and g(02) we used the now 
classical perturbation method as developed by Davis et al. [16] and their 
co-workers [15,56,64]. Following this work, we assumed that the pair 
potential energy can be separated into two contributions 

V(r) = v<O) = v(1) (35) 
where v<O) is the unperturbed potential energy and v<‘) 1s the perturbation 
potential energy and r 1s rf, lvlth indices ij dropped. Equation (35) is subject 
to the following restraints 

(36) 

( 
0 r> D2 

v(l)= _E o1 < r < o2 (37) 

0 i-G o1 
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and V”) is limited through the condition that v”) < kT_ Luks et al. [ 561 
then approximate the perturbed pair correlation function g(r) as 

g(r) 2I g40) e--PWr) (38) 

where e(r) is the pair correlation function for particles interacting in accor- 
dance with the unperturbed (hard sphere) potential V(O) and p is the Boltz- 
mann factor. In view of this, Luks et al [56] approximated the constant 
value of g(0,) as 

&cl) = gO(o,) eelkT 

The value of $(a,) 

1 +$y 
go@,) = (1 __)Z 

(3% 

has been Dven by Lebovitz 1491 as 

(40) 

where y = n/6pu: [compare with eqn. (24)]. 
The values of g”(a,) have been obtamed by Throop and Beannan [82] 

who numerically evaluated Wertheim’s [86] exact solution of the Percus- 
Yewick equation [49,70]. The agreement is excellent with a maximum dd- 
ference less than 0.005%. On the other hand, the values of g(u2) are more 
difficult to evaluate. Brown and Davis [8] assumed that g(a?) is unity. How- 
ever, for compounds such as n-heptane, where R = CJJU, = 1.314 < 1.70, and 
po: > 0.7 (Hirchfelder et al. [39]), it is seen (Table 1, Throop and Bearman 
[82]) that the value of g(ul) is far from unity. To resolve this difficulty, we 
express the values of g(u2) in terms of the viscosAy, qsw, from eqn. (29). To 
do this, first note that Luks et al. [56] proposed the intermolecular contri- 
bution of the viscous transport process to be 

TV gn (W2k(u,) + R4g(u) =I 
I 

where 

Defining 

B= g (W 

(41) 

(42) 

and putting relation (42) in eqn. (41), we have 

qv = A CBMU,) + R4g@z) =I1 (43) 

The pair correlation function, g(az) now can be obtained as a first approxi- 
mation from eqn. (43) by means of a parameter QI*, defined as 

Q * = R2g@,) z = A+B (44) 
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TABLE 1 

Square-well potential parameters 

Compoutids = (4 R ~112 (K) References 

Neon 2 382 1.870 19 5 39 

Argon 3 067 1.700 93.3 76 
Krypton 3.2’76 1 680 136 5 76 
Xenon 3.593 1.640 198 5 ‘75 
Carbon monoside a 3 290 2.2’70 91.0 39 
Ammonia 2 902 1 268 692 0 39 
Water 2.606 1.199 1260 0 39 
Methane 3 355 1.600 142 5 76 
Ethanc 3.535 1 652 244.0 39 
n-Pentane 4.668 1 360 612.3 ‘76 
PI-Heptane 6.397 1.31-l 629.0 39 
Neopentnne 5 422 1.450 382.6 76 
Benzene 4.830 1.380 620.4 76 

a From viscosity data 

Putting Q* (eqn. 44) in eqn. (29), we have 

(1 + $bp[g((r,) + (&* G/Z)])’ --- _ _--____ _______ 
&a,) + Q* + (a*/~:)[~(~/kT)~] 

+ g (bp)‘[g(o,) + R”gb> Z] 1 (45) 

If we identify parameter C as 

C = (_1 + : bpk(c,) + (Ra* ?/%I)’ -- - 
&a,) + (Y* + (a*/z)[;(E/kT)2] 

(46) 

then we can rewrite eqn. (45) m terms of parameters as 

Vsu = A ;yc + B[g(a,) + Wglol) =:I: (47) 

The entity R’g(a,) E can be refined through eqn. (47) as a new parameter y 

R2g(ci,) E = lR’= y (48) 

Equation (48) contains the square 
by eqn. (47). Putting eqn. (48) m 
diffusion coefficient [eqn. (32)] we 

D (do,) - W’ 

well shear viscosity, qslV, as determined 
the expression for the square-well self- 
obtain 

(49) 

Through this substitution we have expressed the square well selfdiffusron 
coefficient [eqn. (49)] as a function of shear viscosity, qs,,.,, and eliminated 
the self-diffusion coefficient’s direct dependency on g(az). To perform the 
numerical calculations it was assumed that g(al) = gO(o,), that is, taken just 
outside the well, and that we can apply eqn. (40). Then, using the denved I$ 
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and Z polynominal functions [eqns. (33) and (34)], self-diffusion coeffi- 
cient, Dsw, values [eqn. (49)] were calculated for 13 systems (Table 1) and 
82 temperatures (Table 2) with an average error of 16.1% (espenmental self- 
diffusion coefficient, viscosity and density values are found in Table 2). 
Usmg the condition that g(o,) = g”(a,), we have deliberately neglected the 
temperature effect as specified by eqn. (39). To compensate for this simphfi- 
cation, we empirically modified eqn. (49) by a temperature function f, given 
as 

f = esp(p + qTJ (50) 

and obtained the temperature corrected self-diffusion coefficient, DSivT, as 

D SWT = &W expb + qT) (51) 

where Dsw is calculated from eqn. (49) and p and 4 are constants. The values 
of constants p and q were determined from the available experimental data 
(13 liquids, 82 data points, Table 2) using non-linear least squares curve fit- 
ting methods as 

p = -1 00541 x 16-l f 1.61369 X lo-’ 

q = 1.32774 x 1o-3 f 7.15517 x 1o-5 (52) 

Equation (51) correlates the available data of the 13 liquids (Table 2) with 
an average error of 5.3% This is a considerable improvement over the cslcu- 
lated results of eqn. (49) which did show an average error of 16.1% This 
improvement is due to the empirical temperature correction function, /= 
esp(p + qT). As a matter of fact, at T = 75.7 K, f 2: 1.0: and hence, below 
T = 75.7 K function f = exp(p + qT) decreases the calculated self-diffusion 
coefflclen t, D siv, value (eqn 49), and above T = 75.7 K, mcreases the calcu- 
lated Dsw value, thus bringing it into the experimental self-diffusion coeffi- 
cient value range which for all liquids (Table 2) is about -1-570. The general 
trend of temperature dependency for our calculations [eqn. (49)] is the 
same as that of other investigators, that is, the calculated square well self-dlf- 
fusion coeffrcrent values are smaller than the experimental ones [15,62,72] 
The average error of 5.3% obtained [eqn. (51)] for all liquids (Table 9) com- 
pares excellently with the average error of 8.3% resultmg from the use of 
eqn. (10) and lvlth the average error of about 7 % when using eqns. (ll), (12) 
and (14) for the same data point set (Table 2). Equation (9), however, did 
yield an average error of 9.4%; again for the same data set. It is of interest to 
note that the use of eqns. (lo)-(12) and (14) yields average errors which 
closely agree with those obtained by Pratt and Wakeham [66]. They 
reported self-diffusion coefficients for water and monohydric alcohols, and 
found that their calculations led to deviations from the expenmental data of 
up to f 10%. Subject to the availability of the square well potential param- 
eters, o, E and R; the results of these compansons show that the proposed 
predictive method [eqn. (51)] is indeed of a general nature. 
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