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ABSTRACT

A semi-empirical equation for self-diffusion coefficient determination has been ob-
tained using square well potential theory modified by a temperature correction function,
f=exp(p +gT), where p and g are empirical constants. The proposed equation compares
well in overall accuracy with the experimental data and other selected prediction methods
over the complete range of investigation (13 compounds, 82 data point sets).

INTRODUCTION AND PERTINENT EARLIER WORK

Focusing around the ratio Dn/T, where D is the self-diffusion coefficient,
7 is the coefficient of viscosity and T is temperature, K; an array of relations
have been established between the self-diffusion coefficient, the viscosity
and the density p of hquid (see references 5, 9, 14, 19, 20, 24—30, 33, 38—
46, 50—52, 59, 60, 63, 68, 69, 77, 79, 80 and 84).

The oldest among these relations are those derived with the help of ele-
mentary hydrodynamic theory. Following the early work of Stokes [79],
Fick [30], Nernst [63], Bassett [5], Einstein [24] and Sutherland [80], it is
possible to obtain a connection between the diffusion coefficient of a solute,
D, and the shear viscosity of a solvent, 7., as

D, _ 1 1+3n,/fa

= 1
ET 6ma 1+ 2714/fa 1)
where k is the Boltzmann constant, a is the radius of the diffusing molecules
and 8 1s the coefficient of sliding friction which depends on the size of the
diffusing molecules, that is the magnitude of radius a. Since 3 has physical
meaning only between the values of § =0 and 8 = =, eqn. (1) yields the fol-
lowing two limiting cases:
(a) Fluid does not slip over the surface of the diffusing spherical molecule;
hence 8 = =, and eqn. (1) reduces to
Dens . 1 (2)
RT 6ma
Relation (2) is the so called Stokes—Einstein equation. Since § = o, eqn. (2)
should describe diffusion of large spherical molecules in solvents of much
smaller molecules.
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(b) Fluid slips completely over the surface of the diffusing spherical mole-
cule. In this case, § = 0, and eqn. (1) yields

Dins_ 1
BT 4ma

Because of the imposed complete slippage condition (8 = 0), it is expected
that eqn. (3) will correlate better for diffusing molecules which are slightly
larger than or about equal to the solvent molecules. As a matter of fact, 1f
solute and solvent molecules are of aqual size we may assume that eqn. (3)
is directly applicable for calculation of liquid self-diffusion coefficients *.

Li and Chang [50] set 2a = (V/N)¥? in eqn. (3) and obtained the follow-
ing relation to describe self-diffusion

Dn_ L (3)™ (4)
RT 27 \V
where V 1s the molar volume of liquid and N is the Avogadro number. L1 and
Chang [50] suggested that eqn. (4) is valid for liquids whose structure is the
simple cubic packing of spherical molecules, with all molecules just touching
On the other hand, the same functional form [egns. (3) and (4)] follows
from the principles of the absolute rate theory [35]. As a matter of fact, in
its simplest form, the Eyring self-diffusion equation [35] is

DTT= A

rRT )\2)\3
where A, is the distance between two adjacent layers of the fluid molecules,
while A, and A; are the distances between two neighbouring molecules in a

layer perpendicular to and in the direction of motion If we set A, =\, = A,,
then it can be proved that

(3)

(9)

)\l _ N 173
A (V) (6)
Putting eqn. (6) in eqn. (5), we have
Dn N)l/3
== 7
kT (V (7)

Equation (7) gives values for the self-diffusion coefficient D which are too
high by a factor 37 and 2w respectively when compared with egns. (2)—(4).
There has been a flurry of modifications proposed to remedy this situation;
for instance, Li and Chang [50]. However, at this point it will suffice to note
that while discussing the significant structure theory of liquids, Eyring and
March [28] introduced the configurational factor £ in egn. (7), so that

N 173
Dn_1 _) (8)
RT £V

The introduced §-factor did bring the calculated self-diffusion coefficient

* For critical discus regarding the validity of these equations, refer to references 19,
20, 25—27, 29, 33, su, 39, 40, 42—46, 68 and 69.
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values into better agreement with experimental data.

McLaughlin [59,60] reevaluated eqns. (3) and (4) for a series of liquids,
and found that in these equations instead of the factor 27 one should use an
empirical value of 2.0357 (mean vanation *10%). Hence, eqns. (3) or (4)
may be rewritten as

DT? _ 1 (N 1/3 (9)
RT 2.0357 \V

However, Dullien [20] having considered more systems and using slightly
different values for D, nn and a, found for the factor 27 an empirical value
1.97 as compared with the McLaughlin’s value of 2.0357 [egn. (9)]. Liel-
mezs and Chan [52] obtained a value of 1.927 for the same factor: and so,
using a much larger sample of experimental self-diffusion data over a range
of temperature, affirmed Dullien’s [20] finding.

Dullien [20] however considered this empirical value of =27 for liquids to
be fortuitous and independent of the fact that the Stokes—Einstein formula
[egn. (3)] for B =0 also contains 27 for the numerical coefficient *. Yet it
appears to us that further work in checking the changes in the values of this
averaged factor may be in order especially if interpreted in terms of liquid
structure and measurable physical parameters **. Following Lamm’s
[42—46] theoretical work =** Dullien [19,20] proposed the following self-
diffusion relation

Dnv
NET

where V, is the critical molar volume.

Equation (10) through the group DnV/NET is temperature independent
(assumption listed by Dullien [19]). However, subsequently, Dullien and co-
workers [25,26] modified eqn. (10) to include temperature dependency as

=0.124 X 10°16y2/3 (10)

DnV) o -

e =—1L.44 + .152V2 h 11

(NkT min 1.42+0 c (11)

subject to the condition

(DnV) _ (DnV) . (_4_)2 (12)
NkT actual NkT min dmln

* It has been shown (Stokes [79], Ahn et al [4]; Ahn [3]) that considering the hydro-
dynamic fluid flow conditions, the radius of the diffusing molecule [eqns. (1)—(3)] is
insensitive to the liquid structural packing arrangements, and that comparison with the
experimental diffusion coeflficient values favors the slip limit of §=0 This of course
indirectly supports the use of predictive relations such as eqn (9), and the notion that al
least for the simple fluids, one indeed could use an empirical factor such as 1 92 (Liel-
mezs and Chan [52]) or for that matter, factor 2.0357, eqn. (9).

** Note the introduction of the configurational factor, £, by Eyring and March [28] in
eqn. (8).

*** [{ js interesting to recall that friction coefficients found in Lamm’s {42—46] theory
are the reciprocal of the mobility in Nernst's work [63].
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where d is the apparent molecular diameter, defined by Dullien [19] and
Ertl and Dullien [25] as

vV\l/2
d= 2.24(%) (13)

and d.,,, is the effective minimum molecular diameter of the fluid over a
given temperature range [25]. The ration d/d,;, is expressed in terms of the
reduced temperature, T, = T/T, (T, is the critical temperature) as

d
dm1n

Equations (11), (12) and (14) should prove especially useful for tempera-
tures of T, < 0.46 [25].

=2.55 X 107°T;* + 0.35T, + 0.179 (14)

EQUATIONS DERIVED FROM HARD SPHERE AND SQUARE WELL MODELS

The simplest dense fluid is the hard sphere fluid. The hard sphere fluid is
characterized only by repulsive forces, and so this fluid has only fluid—solid
transition (i.e. meiting point). The transport properties of this fluid depend
only on the radial distribution function at the point of contact of the hard
spheres. In this case, the assumption of pairwise additivity is exact, and the
motion of hard spheres is described accurately by binary collisions, even at
high densities. With respect to this background, and assuming that the spatial
pair distribution function depends only on the temperature and density and
that the velocity distribution function of a single particle is locally Maxwel-
han, Longuet-Higgins and Pople [54] developed an axpression for the shear
viscosity nn., given as

da (mRT\'""*(P N
Ths 3 ( p- ) (k_T 7) (15)
where the subscript hs represents the hard sphere model, a is the radius of
the diffusing hard sphere molecule, m is the mass of the sphere, and P is the
pressure.

Assuming further that the auto-correlation function for the velocity of the
particle decays exponentially, they derived also the coefficient of self-diffu-
sion for hard spheres, given as

_a (mkT l’Z(PV \
D=5 () (7r1) (19)
Combining eqn. (15) and (16), we have
Dhsnhs —_ 2‘12 (N)
rRT 5 \V (17

If we let ¢ be the fraction of the total volume occupied by the hard spheres,
and if we assign the value ¢ = 5/9, then eqn. (17) becomes

Dhsnhs = 1
kT 6ma

(18)
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Equation (18) is of the same form as eqn. (2), the Stokes—Einstein relation
with no slip condition over the surface of the diffusing molecule.
On the other hand, eqn. (17) may be rewritten as

Dhsﬂhs |4
NrT

Equations (19) and (10) are functionally similar since they both possess the
same group DnV/NRT, equated to a constant which is characteristic of the
given fluid. If we introduce the molecular hard sphere co-volume ¥, b,,
given as

=252 (19)

bo = (*§) nNa3? (20)
bo = (¢ ) mNa® = 2Vig = (2)(0.376) V. (21)

where V{§ and V,_ are the molar volumes of liquid at the normal boiling and
at the critical points, respectively, then by using relations (20) and (21), we
can transform egn. (19) into

Dy ctnsV
NRT

Equation (22) was essentially derived by following hard sphere fluid argu-
ments. It is, however, of interest to recall that Dullien [19] empirically first
derived *x*
Dnv
'1:—71 =0.107 X 1071623 (23)
and then refitted egn. (23) to eqgn. (10).

In order to calculate the values of 7, and Dy, [eqns. (15). and (16)], we
let pressure P be defined by the Percus—Yevick equation of state for hard
sphere fluids [49,70] as

= 0.070832 x 107 'sv?/3 (22)

(24)

where y = (37)p0?; p is the number density of the fluid and o the collisional
diameter given as 0 = 2¢ [for instance, see eqns. (15), (16) and (19)].
Comparative calculation of self-diffusion coefficients for liquid CH, at
95.2, 100.0, 106.1 and 110.5 K by means of eqns. (9), (10), (16) *=*, (21)
and (22) showed the following average percentage error with respect to the
experimental values (Table 2: eqn. (9): 3.2%; eqn. (10): 5.6%; eqn. (16):
10.2%; eqn. (21): 42.2%, eqn. (22): 39.1%. The calculated self-diffusion

* Note that the second virial coefficient is defined also as B. = (16/3)ma?. Hence it is pos-
sible to prove that eqn. (17) is equivalent to the first approximation of the diffusion coef-
ficient obtained by the Chapman and Enskog theory [54].

** For further information regarding eqns. (10) and (23) see the work by Vadovic and
Colver [84] and the work of Tyn [83].

**¥* To obtain self-diffusion coefficient Dy values [eqn. (16)], we calculated Ffirst Tihs
(egn. 15) values which were then substituted into egn. 16. All these calculations were
done on the basis of the pressure, Py, ¢, of the hard sphere fluid [eqn. (24)]
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coefficient values for all of these equations showed very poor temperature
dependency. It should be noted that eqns. (9), (10) and (16) showed the
accuracy expected for the relatively symmetrical CH; molecule. On the other
hand, egns. (21) and (22) which were derived through the assumptions of
the hard sphere model, could stiil be subjected to the empirical parameter-
curve fitting adjustment techniques, and thus made more accurate [compare
with eqn. (10), see also Dullien [19]; Ertl and Dullien [25]]. Additionally,
eqn. (22) could be modified by means of empirically derived, temperature
dependent correction functions. Whether this should be done with reference
to the critical state properties [compare with egns. (11), (12) and (14)]
remains a question of further work *>.

As noted, the relations derived rigorously from the theory of hard sphere
fluids [eqns. (15), (16) and (19)] do not reproduce satisfactorily the temper-
ature dependence of the self-diffusion coefficient showing questionable
agreement between theory and experiment (see for instance work by McCall
et al [57], Douglas and Anderson [17], Kessler et al. [41]). As these equa-
tions represent assemblies of hard spheres with no attractive force interac-
tions between constituent particles, they are in effect crude replicas of the
real fluid, and so 1t is not surprising to find that these expressions provide
rather a poor description of molecular transport in liquids. Longuet-Higgins
and Valleau [55] recognized this, and replaced the hard sphere potential
theory of Longuet-Higgins and Pople [54] by the more realistic square well
potential model which in a rough way accounted for the attractive forces,
which effect the transport properties at moderate densities of fluids. As
such, the Longuet-Higgins and Valleau [55] extension of the hard sphere
theory of Longuet-Higgins and Pople [54] is characterized by four types of
binary collisions instead of binary collisions al the contact of the hard
spheres. Even at that, the smooth sphere with the square well potential, 1n
effect being a monatomic simple fluid, omits the effect of the rotational
degree of freedom in the description of the diffusional process.

The zeroth order expressions for shear viscosity and self-diffusivity
denved by Longuet-Higgins and Valleu [55] are given as

ngw = f2(mmk)' * {‘10*4 +pb*t = ( ],GT\’} (25)
3p (1T _ (e
0o "= *2 *2 — ~ 2
Dsw 32(7Tm laa *Bb —(kT (26)

where superscript “0’’ = zeroth order: subscript SW = square well potential;
m 1s the molecular mass; p 1s the number density of the fluid, a* is the repul-
sive radius of the smooth sphere; b* is the attractive radius of the smooth

* While not discussed in this work, the Enskog theory of hard spheres (Chapman and Cow-
ling [9], Longuet-Higgins and Pople [54], Dahler [14]) and the corrected form of Ens-
kog’s theory (Dymond [21—23], Van Loef [85]) via the method of molecular dvnamics,
vield expressions relating the exact self-diffusion coefficients for dense hard sphere fluids
to the molar volume and hence temperature Van Loel [85] has shown that for several
simple liquids the calculated values agree with the experimental self-diffusion coelficient
values over a considerable temperature range.
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sphere; € is the depth of the attractive potential well; «, 8 are the particular
values of the equilibrium pair number density in configurational space, p$.
The function = is

= () =1 - (2ZT) exp(%) 3ir) (;T) K g57) (D

where K,(e/2kT) is the modified Bessel function of the second kind.

To evaluate the required transport properties, one needs the molecular
parameters of the square-well theory, a*, b* and €, and the corresponding
values of a and 8 of pair number density function. Indeed, eqns. (25), (26)
and (27) represent the starting point of the many studies of application of
the square well model to transport processes [8,15,16,56,64,72,73].

Proposed relations

The zeroth order approximation of square well potential [eqns. (25)—
(27)] by Longuet-Higgins and Valleau [55] was extended to a higher order
approximation by Davis et al. [16] who introduced a modified Maxwell—
Boltzmann integro-differential equation valid for dense square well fluids
interacting with the pair potential V(r,,) as

W(r,)=0; r, > 02
‘l"(ru) = "€ ; O, < r” =< (o)
V(r,)=+=: r, <o (28)

where r;, 1s the distance of separation of particlesi andj, o 1s the hard
sphere (or repulsive) diameter, 0. 1s the diameter measuring the range of the
square well attraction, or the attractive diameter.

This Davis et al. [16] derived modification of the Maxwell—Boltzmann
integro-differential equations was examined by Davis and Luks [15] who by
means of an approximate pair correlation function obtlained an expression
for shear viscosity as

5 (mkT ' *[[1+31bp(g(o,) + R'g(a:)V)]*
775\\——‘—:( ) - Y SYPY X
1603 lg(ol) + Rgl0.)[= +L(e/kT)]

13

+ o2 (bp)(g(0) + R8(02) z)} (29)
m

<

where R = g./0,, b = 2m03/3; p is the number density g(o,) 1s the equilibrium
radial distribution function for r;, = o; + O (evaluated just inside the well).
g(0,) is the equilibrium radial distribution function for r;» = 0. + 0 (evalu-
ated just outside the well).

The function ¥, however, is defined as

Vv =1—exp —

f e? dx) (30)

clr)l

IT kT (1
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while function [=] is given now [compare with egn. (27)] as

— 1/2 2

== ﬁ—Zk_T—zf (JC +—) e dx (31)
To obtain the expression for the self-diffusion coefficient, Davis and Luks
[15] used the results of Longuet-Higgins and Valleau [55] and rewrote eqn.
(26) as

Dgw =

3 (kT )” 2 2 —_ -1
—_— + )= 32
8007 \nm [g(0,) + R?g(02) =] (32)
Luks et al. [56] have given the value of the {y and = functions [egns. (30)
and (81)] in terms of the arguments (€¢/kT) and (e/RT)"?. Using the given
argument values [56], we expressed the functions ¥ and = as polynomials m

their own arguments, and by means of least squares curve fitting techniques,
obtained

1/2
Y =—4.07238 X 107! + 5.42382 x 1073 [(l T) :]

—3.25477 ¥ 107* + 2.14225 X 10-4[( iT) ] (33)

= = 7.53430 X 10-'° + 8.12495 X 10~ (i)
kT

a4
+9.86055 X 102 + 4.11847 x 10~ (%)

6
+ 9251934 X 10~ + 4.91302 X 10~° (,ET) (34)

The variance for the given function is 1.75 X 10~° for eqn. (33) and 2.95 X
1074 for eqn. (34). To estimate the values of g(0,) and g(0,) we used the now
classical perturbation method as developed by Davis et al. [16] and their
co-workers [15,56,64]. Following this work, we assumed that the pair
potential energy can be separated into two contributions

V(r) = V(O = ptD (35)

where V® is the unperturbed potential energy and V'’ 1s the perturbation
potential energy and ris r;, with indices ij dropped. Equation (35) is subject
to the following restraints

0 r> o1

o = (36)
oo r< (o8]
0 r> O,

Vi ={— 0,<r<o, (37)

0 r< o,
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and VP is limited through the condition that V" < kT. Luks et al. [56]
then approximate the perturbed pair correlation function g(r) as

g(r) = gt® g8V (38)

where g%(r) is the pair correlation function for particles interacting in accor-
dance with the unperturbed (hard sphere) potential V°? and 8 is the Boltz-
mann factor. In view of this, Luks et al [56] approximated the constant
value of g(o,) as

g(0:) = g°(0,) e*/*T (39)

The value of g°(g,) has been given by Lebovitz [49] as
1+1y

(1—y)?

where y = 7/6p0o3 [compare with eqn. (24)].

The values of g°(g,) have been obtained by Throop and Bearman [82]
who numerically evaluated Wertheim’s [86] exact solution of the Percus—
Yewick equation [49,70]. The agreement is excellent with a maximum dif-
ference less than 0.005%. On the other hand, the values of g(o,) are more
difficult to evaluate. Brown and Davis [8] assumed that g(g,) 1s unity. How-
ever, for compounds such as n-heptane, where R = 0,/0, = 1.314 < 1.70, and
poi > 0.7 (Hirchfelder et al. [39]), it 1s seen (Table 1, Throop and Bearman
[82]) that the value of g(0,) is far from unity. To resolve this difficulty, we
express the values of g(o,) 1n terms of the viscosity, nsw, from eqn. (29). To

do this, first note that Luks et al. [56] proposed the intermolecular contri-
bution of the viscous transport process to be

g%ao,) = (40)

nv=A

48 2 a —
55, (bp)*[g(o,) + Rg(0) -—]} (41)

where

5 (ka)”2

T 1602 \ 7
Defining
48
B= 257 (bp)® (42)

and putting relation (42) in eqn. (41), we have
nv = A {Blg(0,) + R%g(02) =1} (43)

The pair correlation function, g(g.) now can be obtained as a first approxi-
mation from eqn. (483) by means of a parameter a*, defined as

o = Rig(on) = = ( ;7% —glon)) 1R? (44)
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TABLE 1

Square-well potential parameters

Compounds o (A) R elk (K) References
Neon 2382 1.870 195 39
Argon 3 067 1.700 93.3 76
Krypton 3.278 1 680 136 5 76
Xenon 3.593 1.640 198 5 75
Carbon monoxide 2 3 290 2.270 91.0 39
Ammonia 2902 1268 6920 39
Water 2.606 1.199 12600 39
Methane 3 355 1.600 11425 76
Ethane 3.535 1652 2440 39
n-Pentane 1.668 1360 612.3 76
n-Heptane 6.397 1.314 629.0 39
Neopentane 5122 1.450 382.6 76
Benzene 4.830 1.38GC 620.4 76

2 From viscosity data

Putting a™ (eqn. 44) in egn. (29), we have

= _5 _(mkT\'Z| (A +3bplglay) + (Ra” Y/=)])?
Msw 160%(7 g(o,) +a* + (a*/2)[L(e/kT)*]

8 . oy =
* o5n (bp)-[g(a,) + Rg(02) —]} (45)

If we 1dentify parameter C as

o= (A +3bple(a)) + (Ra™U/2)])?
g(o,) +a* + (o* /2L (e/RT)?)

then we can rewrite eqn. (45) in terms of parameters as
nsw = A{C + Blg(g,) + R'gl0.) =]; (47)
The entity R*g(g.) = can be refined through eqn. (47) as a new parameter vy

R2%g(G.) == {L(ns_\!!i___gl —g(o»l)} JR? =~ (48)

(46)

B

Equation (48) contains the square well shear viscosity, gy, as determined
by eqn. (47). Putting eqn. (48) 1n the expression for the square-well self-
diffusion coefficient [eqn. (32)] we obtain

3 ]T 1/2
Dgy = 8po3 (‘1:7) (g(o)) —™! (49)

Through this substitution we have expressed the square well self-diffusion
coefficient [eqn. (49)] as a function of shear wiscosity, gw, and eliminated
the self-diffusion coefficient’s direct dependency on g(o.). To perform the
numerical calculations it was assumed that g(o,) = g%o0,), that is, taken just
outside the well, and that we can apply eqn. (40). Then, using the denved
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and = polynominal functions [eqns. (33) and (34)], self-diffusion coeffi-
cient, Dgy, values [eqgn. (49)] were calculated for 13 systems (Table 1) and
82 temperatures (Table 2) with an average error of 16.1% (expernmental self-
diffusion coefficient, viscosity and density values are found in Table 2).
Using the condition that g(o,) = g°(0,), we have deliberately neglected the
temperature effect as specified by egn. (39). To compensate for this simphfi-
cation, we empirically modified eqn. (49) by a temperature function f, given
as

f=exp(p +qT) (50)
and obtained the temperature corrected self-diffusion coefficient, Dgw T, as

Dgwr = Dgw exp(p +qT) (51)

where Dgy is calculated from eqn. (49) and p and g are constants. The values
of constants p and g were determined from the available experimental data
(13 hquids, 82 data points, Table 2) using non-linear least squares curve fit-
ting methods as

p=—100541 x 107! + 1.61369 X 10~*
g =1.32774 x 1073 + 7.15517 X 10~% (52)

Equation (51) correlates the available data of the 13 liquids (Table 2) with
an average error of 5.3%. This is a considerable improvement over the calcu-
lated results of eqn. (49) which did show an average error of 16.1% This
improvement is due to the empirical temperature correction function, /=
exp(p + qT). As a matter of fact, at T = 75.7 K, f~ 1.0: and hence, helow
T ="75.7 K function f=exp(p + gqT) decreases the calculated self-diffusion
coefficient, Dgy, value (eqn 49), and above T = 75.7 K, increases the calcu-
lated Dgy value, thus bringing it into the experimental self-diffusion coeffi-
cient value range which for all liquids (Table 2) is about *5%. The general
trend of temperature dependency for our calculations [eqn. (49)] is the
same as that of other investigators, that is, the calculated square well self-dif-
fusion coefficient values are smaller than the experimental ones [15,62,72]
The average error of 5.3% obtained [eqn. (51)] for all liquids (Table 9) com-
pares excellently with the average error of 8.3% resulting from the use of
eqn. (10) and with the average error of about 7% when using eqns. (11), (12)
and (14) for the same data point set (Table 2). Equation (9), however, did
yield an average error of 9.4%; again for the same data set. It is of interest to
note that the use of eqns. (10)—(12) and (14) yields average errors which
closely agree with those obtained by Pratt and Wakeham [66]. They
reported self-diffusion coefficients for water and monohydric alcohols, and
found that their calculations led to deviations from the experimental data of
up to +10%. Subject to the availability of the square well potential param-
eters, 0, € and R; the results of these compansons show that the proposed
predictive method [eqn. (51)] is indeed of a general nature.
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