Note

THERMODYNAMICS OF DIVALENT SALTS IN DIOXANE + WATER MIXTURES

P.B. DAS

Department of Chemistry, Ravenshaw College, Cuttack-3 (India)

(Received 10 December 1979)

Studies of electrolytic conductance in dioxane + water media of varying dioxane content were initiated previously [1]. In the present communication an attempt is made to evaluate the thermodynamic function ΔG_t^0 for the transfer of MgSO₄, ZnSO₄ and NiSO₄ from water to the respective dioxane + water media, which would give some information regarding ionic solvation.

MATERIALS AND METHODS

The salts and dioxane used were of E. Merck "Extra pure" varieties. Purification of dioxane, preparation of solvents and solutions and conductance measurements have been reported earlier [1]. The conductance measurement was of an accuracy of ± 2 in 1000, the concentration range was 0.02–0.002 mole l⁻¹, and the investigation temperature was 35 ± 0.01°C.

RESULTS AND DISCUSSION

The plot of Λ vs. $C^{1/2}$ was not linear, Λ^0 and K were obtained using the methods of Fuoss and Krauss [2] and Shedlovsky [3], which gave the same results.

The ΔG^0 values were calculated by the equation

 $\Delta G^0 = -RT \ln K$

1.51

NiSO₄

The standard thermodynamic quantities (ΔG_t^0) for the transfer process

Free energy of transfer of sails from water to dioxane + water mixtures							
	ΔG_t^0 (kJ mole ⁻¹)						
Salt	10% dioxane	20% dioxane	30% dioxane				
 MgSO₄	2.86	6.02	8.68				
ZnSO4	4.85	12.89	14.90				

5.89

TABLE 1 Free energy of transfer of salts from water to dioxane + water mixtures

4.10

Salt	$\Delta G_{t(el)}^{0}$ (kJ mole ⁻¹)			$-\Delta G_{t(Ch)}^{0}$ (kJ mole ⁻¹)		
	10% dioxane	20% dioxane	30% dioxane	10% dioxane	20% dioxane	30% dioxane
MgSO ₁	228.66	508.14	889.25	231,52	514.28	897.93
ZnSO ₄	193.49	429.97	752.44	198.34	442.26	767.73
NiSO	134.43	298.74	492.02	135.34	305.84	497.91

Electrical and chemical parts of the free energy change accompanying the transfer of salts from water to dioxane + water

(from water to 10, 20 and 30% dioxane + water mixtures) were determined by the method of Feakin and Turner [4], and are tabulated in Table 1. The probable uncertainty in ΔG_t^0 is ±15 J mole⁻¹.

The ΔG_{ι}^{0} values are observed to be positive at all solvent compositions. This indicates that the salts are in a higher free energy state in dioxane + water mixtures than in water, suggesting that water has more affinity for the salts than for the dioxane + water mixtures.

Knowing the ΔG_t^0 values and the ionic radii of the cations and anions [5], ΔG_t^0 was divided into two parts according to Roy et al. [6]. It consists of an electrostatic part, $\Delta G_{t(el)}^0$, corresponding to a change in the dielectric constant of the medium and another nonelectrostatic or chemical contribution, $\Delta G_{t(Ch)}^0$, arising from the specific chemical interaction between the ions and the solvent. $\Delta G_{t(el)}^0$ was calculated from Born's equation [7], and then $\Delta G_{t(Ch)}^0$ was determined. The results obtained are presented in Table 2. It is evident that the values of $\Delta G_{t(Ch)}^0$ are negative in all cases and increase with increase in dioxane content. This indicates that the transfer of salts from water to dioxane + water mixtures is favoured as far as chemical interaction agreement with viscosity results [8].

Using conductance data, the Walden product $\Lambda^0 \eta_0$ has also been employed $Zn^{2^+} > Ni^{2^+}$; hence, the ionic solvation is of the reverse order, which is in agreement with viscosity results [8].

Using conductance data, the Walden product $\Lambda^0\eta_0$ has also been employed to study the ion—solvent interaction in a solution. $\Lambda^0\eta_0$ values of the three salts at different solvent compositions are recorded in Table 3. The plot of

TABLE 3

The Walden product, $(\Lambda^{\circ}\eta)$ (Ω^{-1} cm² p), of the three salts at different solvent compositions

Salt	10% dioxane	20% dioxane	30% dioxane	
MgSO ₄	0.979	0.991	0.694	
ZnSO₄ NiSO₄	1.091 0.937	1.084 0.971	1.069 0.646	

TABLE 2

 $\Lambda^0 \eta_0$ vs. solvent compositions is linear and the slope is of the order Mg²⁺ > Ni²⁺ > Zn²⁺, which indicates the order of the ionic solvation [9]. There is some discrepancy between the dissociation constant obtained from ΔG_t^0 and that obtained from the Walden product. The crystallographic radii of Zn²⁺ and Ni²⁺ are almost the same (0.72 and 0.74, respectively), so it is expected that the ionic solvation would be almost the same; hence the discrepancy between the two methods is not unnatural.

REFERENCES

- 1 N.C. Das and P.B. Das, Electrochim. Acta, 23 (1978) 191.
- 2 R.M. Fuoss and C.A. Krauss, J. Am. Chem. Soc., 33 (1933) 476.
- 3 T. Shedlovsky, J. Franklin Inst., 225 (1938) 439.
- 4 D. Feakins and D.J. Turner, J. Chem. Soc., (1965) 4786.
- 5 P.P. Misra and P.B. Das, Experentia, 24 (1979) 321.
- 6 R.N. Roy, W. Vernon and A.L.M. Bothwell, Electrochim. Acta, 17 (1972) 5.
- 7 H.P. Bernets and M.M. Spetzer, J. Chem. Soc., Faraday Trans. I. (1973) 1492.
- 8 P.B. Das, J. Indian Chem. Soc., 54 (1977) 1193.
- 9 R.L. Blokhra and M.L. Parmour, J. Electrochem. Soc., 57 (1974) 117.