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The dependence of the sample weight on temperature as recorded in the 
TG measurement results frequently form a quite complex system of com- 
peting and consecutive reactions, especially in the case of organic com- 
pounds and polymers. In spite of its demonstration by several authors 
[l-41, the substantial dependence of the TG curve on the overall reaction 
mechanism has been mostly ignored in practical TG analyses. If, however, 
the curve analysis is based on an oversimplified mathematical model, mere 
description parameters of questionable value rather than true activation 
energies and frequency factors are obtained [4]. 

It is well known that the major obstacle of a rigorous curve analysis in this 
CUSP is the mat.1~ematica.l intractability of the complex non-isothermal kinet- 

ics. Therefore, the aim of this st.udy is to find feasible approsimations to the 
kinetics of the most common types of complex reactions (Part I) and to sug- 
gest an efficient procedure for the extraction of kinetic constants from the 
rcspectivc TG curves (Part II). 

TIlE FORMAL SOLUTION OF THE NON-ISOTHERhIAL KINETICS OF A GENERAL 

REA(!‘I’ION TREE 

In this study, only a homogeneous reaction system without intervening 
effects of material and energy transport is considered_ Furthermore, all pos- 

sible cross-reactions of reaction intermediates are ignored in our model so 
that on the basic level there are only first-order reactions and the overall 
reaction scheme is a reaction tree rather than a reaction net, viz. 
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Here, Y is the parent compound under TG analysis and, for the general 
reaction intermediate or product Y<_y.)k_l, the upper index denotes its hierar- 
thy level and the ordered set of lower indices denotes its ancestry_ 

Assuming (i) the separability of temperature and concentration functions 
(see, for example, refs 5 and 6), (ii) the applicability of the quasi-isothermal 
approximation [7-g], and (iii) the Arrhenius approximation for the elemen- 
tary reactions, the chemical dynamics of the system is described by the set 

d[Y!:f,;.,l ?t$r.l 
dT 

= - exp(--E(P-)k,,/RT) [Y<Shl) 
4 

..J. . I 

with the formal solution 

where q is the linear heating 
the activation energy of the 
have the meaning 

4;: + 1) = 
"r+l 

.r+l. 

l-J ( rl 
i-l ..m,i ) 

(1) 

(2) 

rate Z(‘! 
..J.k.l is the frequency factor and EIfj_,cm, 

coiesponding reaction. The symbols x and 77 

and 

In eqn. (3), the upper 77 belong to the parallel reactions on 
lower 77 to the family of parallel reactions on the (r + 1)th 
from the I-th level ancestor of the product Yf_yf,z_,. 

the rth level, the 
level which stem 

It is clear that the (p - 1)-fold integral in eqn. (2) has no closed solution 
even for the simplest reaction trees. But given a sufficiently accurate 
approximation of it, the analysis of the reaction kinetics would be much less 
time-consuming than the tedious numerical integration of the equation set 
(1) (which has a tendency to get “stiff” in some cases and thus calls for 

for the simplest cases 

(3) 

(41 

special procedures). Examples of such approximations 
are given below. 



The approximate 
secu five reactions 

solution for the simple systems of competing and con- 

The simplest non-trivial sections of the reaction tree (I) are the systems of 
two competing (II) or two consecutive (III) reactions 

/Ynl 

=\Ys 

Y+ YX1* YN 

For brevity, let us introduce three additional symbols 

n(M) = bj exp(--EX1/R T) dT 

w(M, N”) = zX, esp(-R,,/RT)/[Zhl esp(-Eh,/RT) + cZN esp(-Ex/RT)] 

<(M, N”; M) = /- q(M) q”(N) esp(--Eh,/RT) d7’ 
L 

il1, 

(111) 

(5) 

(61 

(7) 

where M, N stand for the sets of appropriate upper and lower indices and (I 
has two values only, i.e. +l for the system (II) and -1 for (III). Now: it 
holds for (II) that 

[Yl = vlo77w) T(N) 

[Yhrl = Z,,q-‘[Yl,S(W N; MI 

and for (III) 

(S) 

(9) 

[Yl = [Ylorl(M) (10) 

[&I = &,,q-‘[YlovW) SW, N-l; W (11) 

The expressions for [YN] are obvious. The explicit forms of eqns. (S)-( 11) 
need the solution of the integrals n(M) and f(M, N”; M). It is well known 
than n(M) cannot be solved in a close-.j form but numerous fairly good 
approximations are available. As for r(M, N”; M), it clearly holds that 

Z&M, N”; M) + Z&M, N”; N) = sll - Q(M) t7=(N)l (121 

which indicates that this integral has no closed form even in terms of n(M) 
and n(N). Various series expansions converge too slowly or not at all. On the 
other hand, eqn. (12) gives a clue to an intuitively good approximation 

S(M, N=; M) = s% 11 -q(M) VYW MM, N”) (13) 

For E, = E,, eqn. (13) is the exact solution even for & f ZN. In the 
general case, the error of eqn. (13) increases with increasing T in absolute 
values (though not in the relative ones) but its first derivative converges to 
zero. The extensive comparison of the values of eqn. (13) with the results of 
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the double precision Gaussian quadrature shows that the error of eqn. (13) 
does not exceed the order of 1 re1.S for practically interesting values of 2 
and E. The only serious failure of eqn. (13) is its relative disability to 
converge to a finite maximum as does the exact c(M, N; M). We found that 
eqn. (13) generally begins to behave badly if q(M) < 10S3. Therefore, the 
behaviour of eqn. (13) can be improved if the value of T, is found from 

esp esp(-E,,/RT) dT = 10S3 1 
[which can be done, for example, by iteration using Gorbachev [lo] or some 
other approximation for n(M)], and then the upper bound is set a priori to 
the integral 

<(kI, Na; kI),-~_-,.C = 5p1, w; nqT, (14) 

With the upper bound (14), eqn. (13) can be considered to be a fairly good 
approsimation for use in TG curve analysis. 

ESTENSION TO MCRE COMPLICATED CASES 

Various more complicated sections can be cut out from the general reac- 
tion tree (I)_ Let us consider the model (IV). 

‘n, -!f.,n2 

From eqn. (.2), the concentration of the knot product Yjzl) is given by 

exp[-Ekl)/RT] dT (15) 

The integral in eqn. (15) denoted by [(n,, rz;‘; k) may, by analogy with eqn. 

(13), be approximated by”, 
1. - 

l---I 0 i=l Vi 

'1 2 

-"( 1 

2 
7 

i= 1 k, j 

X 
Z&l) exp[--E&l’/RT] 

I? Zi') exp[-Eil)/RT] 

R2 

i= 1 
- C a2,, exp [-Eh~~,z/R T] 

i==l 

(16) 
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With the upper bound analogous to eqn. (14), eqn. (19) is a somewhat 
poorer but still sufficient approximation. If some of the products Y<*) have 
to be expressed individually, some approximation to the double integral is 
needed. A possible way to it will be considered in connection with the next 
system. 

In practical TG, however, a sequence of three different reactions, i.e. sys- 
tem (V), is of a much greater interest. 

Y + Y, + Y:!-+ Y3 (VI 
Here, for brevity, we drop the obvious upper indices for hierarchy levels. As 
indicated by eqn. (Z), the concentrations of Y, and Y, are given by eqns. 
(17) and (18), respectively. 

[Y,l = ~l~-‘~ylo 7?w m, 2-l; 1) 

= 7?(2) 
[YJ = Z,Z,q-z[Y]O ~(3) / s) exp(-&/RT) 5(1,2-k 1) dT 

(17) 

(18) 

The integral {( 1, 2-l ; 1) in eqn. (17) can be calculated by the approximation 
(13). For the double integral in eqn. (18), denoted further by 1, let us sup- 
pose than eqn. (13) is the exact solution of {(l, 2-l; 1) and may be inte- 
grated accordingly. Then, by the repeated use of eqn. (13), the following 
approximation is found. 

,+ &([I+] w&2-‘)u(2,3-‘) 

-[l-S] 
[l - w(1, 2-l)] w(l,34 

I 
(19) 

The repeated use of the same approximation, as used in the derivation of 
eqn. (19), may be somewhat risky. Nevertheless, with the use of the upper 
bounds corresponciing to n(3), n(l) = 10m6 for the first and the second term, 
respectively, the approximation (19) gives, according to the first results, an 
error of several rel. %_ Rough TG analyses, at least, are thus possible by 
means of the modol (V). 

CONCLUSIONS 

The systems (II)-(V) and their obvious combinations cover all cases of 
complex “tree” reactions practically analysable by TGA. With the equations 
given in this paper, especially with the approximations (13) and (19), the 
quantitative TG curve analysis can be performed on a computer yielding 
sufficiently precise true activation energies and frequency factors. One has to 
bear in mind, however, the limitations of the statistical reliability of any 
curve analysis in the more complicated cases caused by the uncertainties of 
the experimental points and by their finite number. Such cases have thus to 
be considered critically. 
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The formal solution of the complex kinetics given here applies to the 
specified homogeneous systems only. Reactions in heterogeneous systems or, 
generally, of non-linear kinetics, give rise to additional mathematical difficul- 
ties even in the cases of moderate complexity and are under investigation. 

ADDENDUM 

After this study had been finished, the author obtained access to the book 
by Koch [ll] containing an approximation of some likeness to eqn. (13), 
namely, in our notation 

r(h%, N-‘; M) = 42,; I1 - r7W)IvW)I (20) 

As indicated in [ 111, eqn. (20) gives good results only for Z,n(N) << 
Z,, n(M), i.e. for the very early stages providing that EN >> E3,. If, however, 
(EN -ELI) < 20 kJ mole-‘, the error of eqn. (20) is of the order of at least 
10 rel. %, even for the early stages and for 2, = 2,. 
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