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ABSTRACT 

The theoretical foundation of dynamic thermomechanometry is expanded to include 
the relaxation of another class of materials, that of semi-rigid solids. By transforming 
composite beams into homogeneous beams, an expression for the sample modulus (Es) is 
derived 

and the general relationship between the shape factor, the elastic constants, and the 
moment of inertia set forth. Using dental amalgam as a test case, the modulus of five 
alloys was determined as a runction of time and ranged from 3.9 to 6.6 x 10” Pa after 
- 15 h. These values were greater than conventional compression tests but less than ultra- 
sonic experiments_ Potential sources of errors in the technique are explored, and the gen- 
eral state oT the art reviewed. 

INTRODUCTION 

Over the last 40 years many instruments have been developed to :neasure 
the relaxation properties of materials_ Amongst the more popular types have 
been the torsion pendulum, the vibrating reed, and the rotating beam 
systems [l] . Each apparatus, whether its nature be forced vibration or free- 
frequency resonance, has a particular physical state, temperature, and fre- 
quency range over which the most reliable modulus values can be obtained. 

Recently, another mechanical spectroscopy technique has been intro- 
duced [Z] that resonates a compound parallel beam system about two 
flexure pivots using a sample coupling arrangement (cf. Fig. 1). Via the 
90” phase-locked, fixed amplitude driving system, a characteristic frequency 
and damping response are measured, from which modulus and tan 6 data can 
be derived. To date, expressions have been reported for determining either a 
Young’s (E) or shear (G) modulus [2,3]. In addition, samples have been 
investigated in both the solid and liquid state - the former using a ribbon- 
like or slender beam geometry, while the latter employing a coil spring or a 
woven fabric as a substrate. 

The current effort considers the problem of measuring the elastic moduli 
of semi-rigid solids. This classification encompasses materials which at some 
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Fig. 1. Schematic illustration of the compound resonant system showing the relationship 
of the sample to the oscillating parallel arms. 

stage of testing are too viscous to be treated as fluids and yet not stiff 
enough to be self-supporting beams. In the early stages of setting cements, 
aggregates, and amalgams are prime examples of such materials. Following 
the theoretical development of the composite beam approach, dental amal- 
gams will be employed to demonstrate the application of the derived equa- 
tions_ 

GENERAL CONSIDERATIONS 

From the schematic drawing of Fig. 1, the balanced driven and passive 
arms may be considered as simple harmonic oscillators. Analogous to linear 
harmonic motion, the angular harmonic motion may be described by a 
similar set of equations [4] where the restoring torque (r) is proportional 
to the angular displacement from the rest position (@) or 

I?=-KG (1) 

Here K is called the torque constant. If friction is negligible the differential 
equation of motion is 

Jd29 
-+K@=O 
dr2 

(2) 

(J being the moment of inertia of the rotating body), a general solution of 
which equals 

Since the angle, (m r + &), is the same at time T as it is after one period 

(l/f) 
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and 

(4) 

Now as the free-body diagrams show (Fig. 2a, b), several torques act on both 
arms. By summing these moments about their respective pivot points, how- 
ever, the restoring torque is easily found for the passive arm 

r=~~~+nl,+vo-CR=--KQ=J~~ (5) 

and 

r = Al, - 
CPQ 

&I, + V(D +L)+CR =-K$I =(J+ tnsRZ)dT3 (6) 

for the driver arm/sample combination. Since the mass of the sample (m,) 
and its associated moment of inertia is negligible compared to that of the 
driven arm itself, the net restoring torque of the compound resonant system 
can be written as 

JdzQ ’ 
( 

VL 
-- M,+VD+- 
dr2 2 

(7) 

The pivot’s moment (M,) and the shear force (V) can be evaluated from the 
free-body diagram for the sample (Fig. 2c) by double integration of the dif- 
ferential equation of the elastic curve of a beam, i.e. 

&I = EI d’y 
dx’ 

(8) 

0 b 

Fig. 2. Free-body diagrams. (a) Passive arm. (b) driven arm/sample combination: and (c) 
sample. 
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where I is the moment of inertia [ 51. By setting ZM,-, = 0 

M=Vx-MS 

and one obtains 

-==l(Vx-Ms) 
d’y 

dx’ EI 

dY 1 vxz 
=-(--Mg 

dx EI 2 

(9) 

(10) 

(11) 

and 

1 
Y=E 

where 

vx3 Wx2’ 
6 2 

+ c,x + c2 (12) 

C, and C, = 0. From eqn. (11) and the boundary condition that 
dy/dx=Oatx=L 

Ula) 

while from eqn. (lla) and the boundary condition that y = A at x = L, eqn. 
(12) yields V 

12EIA v=-- 
L3 

WW 

As the driven arm rotates through an angle @, the intersection of the long 
aes of each beam with the clamped axis of the sample rotate similarly. 
Since both Q and the flexural rigidity of the sample relative to the beams are 
small, the displacement of these points with respect to the sample in the 
Y-direction equal 

4-(zl+L)Q (13) 

By substitution of V (eqn. 12a), A (eqn. 13), and the moment of the pivot 
(M, = -I+$) into eqn. (7), eqn. (14) results 

Jd3 + 
dr’ P 

, 2@W + $1’ -- @=O 
L3 1 (14) 

Comparing eqn. (14) with eqn. (2), the analog to eqn. (4) can be stated as 

f= 
1 + (24EI(D + ;L)~)/L~ 1'2 
2n 

--__ 
J 1 (15) 



HOMOGENEOUS BEAMS 

Solution of eqn. (15) may be solved for the case of simple sample beams if 
the following assumptions are valid [6] : 

(1) the beam is straight and has a uniform cross-sectional area; 
(2) E is invariant over the cross-section and in all directions, i.e., the beam 

is both homogeneous and isotropic (this implies that the material obeys 
Hooke’s law, and that E is the same for tension as for compression); 

(3) the beam does not warp, twist, or buckle as a result of bending. To 
satisfy this requirement an axis of symmetry of the beam should lie in the 
plane of loading; 

(4) the loads applied are equivalent to a pure moment. 
When these conditions are approached, the moduli for any geometry may 

be considered - whether they be common shapes (e.g., squares, rectangles, 
triangles, or circles), or more intricate cross-sections (e.g., hollow squares, 
quarter circles, or extruded channels). In any case, the moment of inertia 
about the neutral axis need only be substituted in eqn. (15), along with the 
experimentally determined Kp and J, to obtain E. For esample, for the case 
of a rectangular prism being flexed in the plane indicated in Fig. 3(a) 

I= E 
12 

(16) 

Fig. 3. Geometry of (a) homogeneous and (b) non-homogeneous beams. (i), Over-view of 
unstressed and (ii) flexed member (cf. Figs. 1 and 2b); (iii), actual cross-sectional area, 
(iv), area (iii) partitioned; and (v), area (iv) transformed. 
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and 

E = tmlf2J-KK, L 3 -_ 
2W(D + :L)z I( ) ?’ (17) 

This expression will be useful for comparison with the compound beam case 
that follows. 

NON-HOMOGENEOUS BEAMS 

In order to evaluate semi-rigid materials, a superstructure must be fabri- 
cated from a resilient, non-reactive material that responds predictably under 
test conditions. To insure a good sample frequency response, the ratio of the 
flexural rigidity (EI) of the sample (s) to the holder (h) should be maxi- 
mized. However, since the holder is more remote from the neutral axis of the 
composite beam, I,, increases at a substantially greater rate than I,. Because 
the superstructure must be sufficient enough to support the sample, I,, must 
inevitably represent a compromise between signal response and function_ 
Therefore, only if E,., can be reduced can the sample represent a significant 
portion of the compound beam signal. 

The preceding criterion, that the sample and holder be composed of mate- 
rials of different moduli of elasticity, constitutes a non-homogeneous beam. 
Solution to such a problem requires that all materials of the original section 
be transformed into an equivalent beam of one material. This transforma- 
tion approach may be used if there is no shp between dissimilar materials 
[ 61. Thereafter the transformed cross-sectional area of the new beam may be 
evaluated as a homogeneous beam by elastic theory. 

As a general case, consider the composite beam of Fig. 3(b). Here the 
cross-section of the sample (s) and U-shaped holder (h) may be described in 
terms of the thickness (t, T) and width (w, IV) dimensions, respectively. By 
partitioning the U-shaped channel into three components - hl, 1z2, and 12, - 
the actual section is ready to be transformed from either s into h or h into s. 
Choosing the latter, n is defined as 

n = Eh/Es (18) 
and the transformed section is generated. Because of symmetry, the neutral 
axis of the transformed section is located at the mid-depth of the beam; that 
is, the centroid (y) of the partitioned section relative to the transformed sec- 
tion is unchanged *. Using jj = T/2, the moment of inertia of the trans- 

* However, if the beam had been flexed around an asymmetrIca plane - e.g., the perpen- 
dicular axis - a new centroidal distance 

i 

n(AhYh)+ 
- II = 1 

~l%~s) 

Y = ------ - --- 

h nAh +h A, 
h=l +=l 

would have had to have been defined by substitution of the cross-sectional area (-4) and 
the distance (y) from an arbitrary reference point for each component (h or s). 
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formed section equals 

(19) 

where IcenL_ is the moment of inertia of a component about its centroid, and 
d is the distance of the centroid of a component from the centroid of the 
transformed section. Accordingly, the total moment of inertia of the compo- 
site beam (I,) equals 

I, = nIh, + 111h2 + nIh, + I, = Ihi + I,: + Ih; + I, 

where 

n( N - w) t3 
I,,; = - -- 

12 
(2Ob) 

I h;- - Ih', 

and 

1, =wc3 

(2Oc) 

12 
(2Od) 

Combining eqns. (20a-d) 

I, = &[n(WP - 2uP) + zuP] (21) 

from which 

I,& = [l + rz(pd -1)] (21a) 

when a = T/t and fl= W/w. Figure 4 summarizes the effect that the shape 
factor (0~~) has on It/Is for several values of rz. 

1 
0 ,z 100 

Fig. 4. Relationship of shape factor (p &) and moduli ratio (n) to the quotient of the 

composite and sample beams’ moments of inertia (1,/I,). 
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Having transformed the composite section into an equivalent beam of one 
material, eqn. (21a) can be substituted into eqn. (15), giving the frequency 
response of the equivalent composite beam (f,) as 

1/Z 
(22) 

and since by a similar analysis 

I,/I, = @a’ - 1) (23) 

the frequency response of the holder alone (f,,) can be espressed from eqns. 
(15) and (23) as 

+ { [ 21E,I,(@” - 1) (D _.._ __ 
+ iL)‘]/LJ] \ 1 ‘7 
_L - _ 

J I 
(24) 

Substitution of eqns. (18). (20d) and (24) into cqn. (22) yields 

E = BiT’J(f: - f;z) L 3 
.s --- (-4 ru(D + !L)’ f 

(25) 

Thus by knowing the distance between the pivot arms, the moment of 
inertia of the arms, and the geometry of the sample outside the sample 
clamps, the modulus of the sample may be obtained by simply measuring the 
frequency response of the holder with and without the sample present; and 
unlike the homogeneous beam case (eqn. 17), no K, need be determined in 
cqn (25) since relative differences are being considered. 

THE EXPERIMENT 

Immediately after trituration and condensation, dental amalgam (hence- 
forth designated by the subscript a) is a semi-rigid solid. Although some of 
the newer ternary alloys do harden enough after 1 h to enable a patient to 
apply significant forces of mastication [ 7-93, even these alloys are not able 
to withstand the clamping stresses that self-supporting beams would 
esperience initially. Moreover, in addition to the diametral tensile, compres- 
sive, and flow tests that are commonly used to evaluate the early setting 
characteristics of amalgam [7-121, the reaction of the mercury with the 
other alloy constituents (primarily silver and tin) does result in gross phase 
changes that should affect the elastic constants. Hence, dynamic thermo- 
mechanometry might further clarify the early setting behavior of these 
alloys. 

Five different amalgams were prepared: two commercial spherical ternary 
alloys (1 and 2), an esperimental modified spherical ternary alloy (3), a com- 
mercial improved lathe-cut binary alloy (4) and an experimental mono- 
disperse spherical binary alloy (5). After adding alloy powder to mercury in 
the specific weight ratio (44-50s Hg) and after trituration for 8-25 set in 

a high speed amalgamator, each alloy was condensed into a reinforced U- 
shaped poly(methy1 methacrylate) channel (Plexiglas G, Rohm and Haas Co., 
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Fig. 5. Early setting lime dependence or five dental amalgams via dynamic mechanical 
measurements_ Modulus values were determined directly from cqn. (35). 

Philadelphia, Pa.). Acrylic was selected for the superstructure hecause it is an 
unreactive, transparent, low modulus (E,, = 2.8 X 10’ Pa) material that Is 
frequently used as a machine calibration standard. Overall dimensions for the 
unclamped (L’) and clamped (L) composite beam were 30.5 and 17.8 mm, 
respectively, while the cross-sectional specifications were T = 2.0 mm, t = 
1.0 mm, W = 3.0 mm, and UJ = 2.0 mm (cf. Fig. 3b) for an L/T = 9. For the 

shape factor &Y’ = 12 and an estimated final u = 0.1-0.05, Fig. 4 indicated 
that the sample represented from l/ 2 to 2/3 of the total composite beam 
moment of inertia. The resulting high output signals were essential if suffi- 
cient resolution was to be realized at early times when the IZ was approsi- 
mately five times greater, i.e., when I, equalled l/6-1/3 of 1,. Within 5-7 
min after the start of trituration, the composite beam was clamped into the 
compound resonant system of a DuPont 981 Dynamic Mechanical Xnalyzer 
and the frequency (f,) continuously monitored at 37°C after setting the 
oscillator amplitude (A) and A/Z gain to 0.20 mm and 0.35, respectively. 
Having determined fh for each empty holder under the identical operating 
conditions as for f,, and having measured the system constants for this 
instrument (J= 1.61 X lo-” kg rn’ and D = 9.93 X 10S3 m), E, was com- 

puted from eqn. (25). 
Results for the five alloys within the first 15 h of setting are shown in Fig. 

5. Initially f, == 12 Hz vs. f,., = 10 Hz for a modulus of 1.2 X 10’” Pa - a 
value ca. 4 times greater than the PMRIA holder alone. Soon thereafter, how- 
ever, differences in alloy composition, particle size or shape, or processing 
treatment affected the setting reaction rates, thereby changing the moduh. 
In the present case, the ternary alloys are seen to attain one-half of their 
15 h moduli in -15 min, compared to the monodisperse alloy that required 
a factor of 4 more time. This observation suggests that a more rapid rate of 
moduli change would be expected to result in superior early strength proper- 
ties. Indeed, the hypothesis is corroborated by the data of hfalhotra and 
Asgar [ 81, who observed that two ternary dental alloys yielded 1 h, compres- 
sive strengths that were from 50 to 700% greater than those obtained on five 
conventional amalgams. Returning again to Fig. 5, with the exception of 
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alloy 5, the 15 h moduli are approaching their masima at 3.9-6.6 X 10” Pa. 
Ill the literature. moduli values for amalgam and its constituent phases 
span a considerable range (0.7-8.3 X 10 lo Pa) due to differences in test 
instrumentation, strain rate, and sample preparation [13-211. However, 
because of the viscoelastic nature of the material itself, the most reliable esti- 
mates must be the low stress, high strain rate tests, i.e., the pulsed ultrasonic 
techniques [ 17-191. Here both Dickson and Oglesby [ 1’71 and Grenoble and 
Katz [ lS] have measured Soung’s moduli of 6.3-6.9 X 10” Pa for bulk 
amalgam samples with 50 7; Hg by weight, although individual phases may be 
as low as 4.9 X 10” Pa [19]. The present technique only approaches those 
values obtained by ultrasonics_ although it generally yields results superior 
to those reported using standard tensile or compressive tests [ 13-16,20,21] _ 

Recently, measurements on micro-compression specimens fabricated from 
these same dynamic mechanical spectroscopy beams gave E, = 4.1-5.4 X 
10” Pa [ 22]_ 

SPECIAL CO%IDER_ATIONS 

As Fig. 3b sl~ows, an asis of symmetry of the composite beam does not lie 
in the plane of loading. As previously stated. however, some departure from 
the assumptions inherent 111 homogeneous beam theory may be accom- 
modated without serious errors. For the current esperiment the magnitude of 
the error caused by this asymmetry can be estimated by considering the con- 
tribution of component 11: to the transformed section. By substituting the 
dimensions for the composite beam into eqn. (20) 

1, = [Ihl, +Ihjl + [Ihsl + 11.11 = [y] + [$j + [j mm3 

Clearly hi always contributes -5% to the overall moment of inertia of the 
holder and a lesser percentage compared to the sample when rz < 0.1. In fact, 
not until IZ > 0.3 does II.,;> 0.15 I,. Considering these circumstances, the 
holder’s asymmetry is more beneficial toward maintaining the superstruc- 
ture’s geometry during condensation and in preventing slip during dynamic 
testing than it is deleterious. 

Although the sample’s moment of inertia (m,R’) was neglected early in 
the general derivation (cf. test followng eqn. 6), that assumption must be 
verified for the present esperiment by comparing the composite beam’s 
moment of inertia (m,R’) to the moment of inertia of the arms (2J). When 
172, = 2.35 X 10e3 kg and R = 0.112 m, m,R’ represented less than 0.01 
(2J + tncR’). 

CLOSING COMMENTS 

Although dynamic thermomechanometry can yield qualitative data on 
similar samples - e.g., in quality control situations - quantitative results 
require special attention. For the case of either homogeneous or transformed 
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non-homogeneous beams, three factors must be considered: the aspect ratio 
in the bending plane (L/T), the flexural rigidity (EI), and the oscillation 
amplitude (A). To avoid both shear and bending module components from 
being present, L/T must be < 1 for the shear modulus situation (G) and 8 
<LIT < E for E. While in the bending case the upper limit of L/T is not 
stated, certainly one exists; since when T becomes thin enough, localized 
wrinkling or buckling would occur. Similarly the lower limit of EI is set 
either by this critical thickness or by the loss of sample to baseline signal 
resolution. And as was the case for L/T an upper limit must esist for EI, too, 

aS the sample’s stiffness or its associated internal friction becomes so great 
that either the electromagnetic feedback system is unable to drive the 
compound resonant system at the prescribed A or the differential equation 
of motion eqn. (2) no longer applies. Concurrently the peak to peak deflec- 
tion must be set to saturate to a constant frequency and yet not buckle or 
break the sample. 

Considering the foregoing factors and noting that J, K, and D are quite 
similar from one instrument to another, a critical esperiment would be to 
calibrate the coupled harmonic oscillators with samples of known moduli. 
By varying I and the slenderness ratio (L/r, where r 1s the radms of gyra- 
tion = m) :q, the reduced plot of the quotient of the actual and the 
theoretical squares of the frequency vs. EI for several ratios of (L/r-) could 
be generated. In this way the useful working range of these instruments 
could be mapped out, and a correction factor applied whenever a preferred 
geometry was not feasible but a quantitative result was desired. 

Occasionally relaxation properties are desired from materials that are 
neither fluid enough to take advantage of surface tension test methods nor 
rigid enough to be self-supporting members. For these cases one approach 
is to test the sample via a superstructure fabricated from a resilient, non-reac- 
tive material that responds predictably under test conditions. Consequently, 
the general relation is derived for the frequency response of two coupled 
harmonic oscillators. Thereafter the solution for homogeneous beams is 
considered follo\x-ed by the non-homogeneous case. Using the transforma- 
tion technique described, the composite beam is reduced to one material and 
a new espression derived which describes the sample modulus (E,) in terms 
of the difference of the squares of the composite beam (f,) and the holder 

frequency (fh) 

E, = 
wJ(f; - fZ_, L 

---- (-4 3 

ro(D + 4L)’ t 

* While L/T is adequate I’or comparing beams or a fised cross-sectional shape, ,r_lr must 
be used to yield a general relationship for cohmns of any conflguration. For example, for 
rectanplar prisms rotated about Y = T/2, L/r = x /12 L/T, whereas for cylinders of diam- 

eter T rotated about 3’ = T/2, Llr = 4 LIT. 
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To demonstrate this technique the early setting characteristics of a semi- 
rigid material, dental amalgam, were observed via the utilization of a U- 
shaped acrylic channel. These moduli results compared favorably with 
previous literature and with recent compressive test data obtained on these 
same sections. Here special attention was also given to the error introduced 
from designing an asymmetrical holder as well as from neglecting the com- 
posite beam’s moment of inertia. 

The discussion concludes with an appraisal of the technique, the factors 
that must be considered for quantitative analysis, and a suggestion for better 
defining the instrument’s capabilities_ 
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