# **THERMAL PROPERTIES AND SPECTROSCOPIC CHARACTERISTICS OF THE COMPLEXES OF PYRAZLNE-2-CARBOXYLIC ACID WITH DIVALENT METAL IONS \***

**A.L. MAGRI, A.D. MAGRI, F. BALESTRIERI, E. CARDARELLI and G. D'ASCENZO** 

*Istituto di Chimica AnaliCica dell 'Uniuersitd di* ROTI'm. *Rome* **(Italy)** 

### **E. CHIACCHIERINI**

Istituto di Merceologia dell 'Università di Roma, Rome (Italy)

**(Received 13 November, 1979)** 

#### **ABSTRACT**

**The spectroscopic characteristics (IR and diffuse reflectance) and thermal properties (TG, DSC) of the solid compounds obtained by the direct reaction of pyrazine-2-car**boxylic acid witi<sup>t</sup> manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) **are reported and discussed. The stoichiometry and thermal stability order of the compounds obtained are determined and their structures hypothesized.** 

### **INTRODUCTION**

**Several data are reported in the literature on the reaction of transition metal ions and pyrazine derivatives [l-20]. In a previous paper [20], we reported the donor behaviour of pyrazine-2-carboxylic acid towards nickel- (II) and iron(I1). Few data are available in the literature on the complexes of cobalt(II), zinc(I1) [9] and copper(I1) [7] with the same ligand.** 

**In the present paper extensive information on the syntheses, thermal properties [as determined by thermogravimetry (TG) and differential scanning calorimetry (DSC)] and spectroscopic characteristics (IR and diffuse reflectance) of the solid compounds obtained by the direct reaction of pyrazine-2**  carboxylic acid with manganese(II), iron( $\Pi$ ), cobalt(II), nickel(II), copper(II) **and zinc(I1) are reported.** 

#### **EXPERIMENTAL**

### *Apparatus*

**The DSC and TG curves were obtained using a "Du Pont" Model 990 DSC cell and a Model 951 thermobalance; the heating rate used was 10°C min-'** 

**<sup>\*</sup> This work was supported by the National Research Council of Italy (CNR).** 

**on samples of l-10 mg; the furnace atmosphere consisted of air or dry pure nitrogen at flow rates of 50-100 ml min-'** ; **all temperatures were corrected for thermocouple non-linearity and are, of course, procedural decomposition temperatures. The reflectance spectra were recorded using a "Beckman " DBG spectroreflectometer; the IR spectra were recorded using a "Perkin-Elmer" 125 grating IR jpectrophotometer. The acidity of the solutions was checked with an "Amel" 333 potentiometer equipped with an "Ingold" type 201 glass electrode and an "Ingold" type 303 calomel reference electrode.** 

## *Reagents*

**Pyrazine-2carboxylic acid was a pure grade product of "Fluka" purified as reported previously [19]. The metal ions were in the form of perchlorate hesahydrate ("Alfa"). All other chemicals** used were analytically pure.

## *Preparation of the solid compounds*

**The following general procedure [20] was applied: 50 ml of 0.15 M**  aqueous solution of the ligand at  $pH \approx 5$  (adjusted by NaOH) were added to 1.5 g of  $M(ClO<sub>4</sub>)<sub>2</sub> \cdot 6 H<sub>2</sub>O$  ( $C<sub>L</sub>/C<sub>M</sub> \approx 2$ ); the resulting solution was main**tained at room temperature for at least 2 h (scratching the wall of the beaker with a glass stick if necessary). The precipitate was filtered off, washed with**  water and dried in vacuo over silica gel for at least 48 h.

### RESULTS

**The results obtained are summarized in Tables 1 and 2, while the thermal behaviour is reported in Figs. l-3. The single compounds, in particular, have the properties reported below.** 

# *Bis(pyrazine-2-carboxylato) manganese(U)*

**A lemon-yellow compound precipitates from aqueous solution. The sim**plest formula is  $Mn(C_5H_3N_2O_2)_2 \cdot 2H_2O$ , which agrees with elemental and **thcrmogravimetric analysis [talc. (W): C 35.62, H 2.99, N 16.62, Mn 16.29, 0 28.47; found (%): C 35.2, H 3.0, N 16.5, Mn 16.6 (by TG in air), 0**  28.7 (by **difference)]. The IR spectrum shows very intense carboxylate absorption bands at 1630 and 1370 cm-'; these are characteristic of a coval**ently bound **-COO** group **[7,21]. The diffuse-reflectance spectrum shows**  bands at 11750, 17500 and 25000 cm<sup>-1</sup> assigned to metal ion  $d \leftrightarrow d$  transi**tions and which are characteristic of an octahedral coordination 1221. According to thermogravimetry in air, this compound loses its water**  molecules in one step (calc.: 10.68%. found: 10.5%). The anhydrous com**pound is stable up to 360°C and then decomposes, through several unresol**ved successive steps, leading to the oxide  $Mn_3O_4$  at 520°C (calc.: 22.62%; found 23.0%); the TG in  $N_2$  shows the same decomposition temperature at



TABLE 1

227



TABLE 2

 $\alpha$ l $(11)$ r Isla Ŀ  $\frac{1}{1}$  $\overline{a}$ ċ diffin Sheeli<br>Sheeli

l,



**Fig. 1. TG GI bis(pyrazine-2-carboxylate)mctal(II) compounds in air.** 

*360°C. The* **DSC curve in an atmosphere of air shows only one endothermic peak for the water loss, while an exothermic peak appears up to 345°C for the decomposition process.** 

## *Bis(pyrazine-2-carboxylato) iron(H)*

**A dark red-violet compound precipitates from aqueous solution\_ T'ne**  simplest formula is  $Fe(C_5H_3N_2O_2)$ ,  $\cdot$  2  $H_2O$ , which agrees with elemental and **thermogravimetric analysis [talc. (%).** *C 35.53,* **H 2.98, N 16.57, Fe 16.52, 0** *28.40;* **found (%): C 35.4, H 3.0, N 16.6, Fe 16.5 (by TG in air), 0 28.5 (by difference)]. Its IR spectrum is similar to that of the manganese(I1) com**plex described earlier, and shows  $v_{COD}$  absorption bands at  $1650-1350$ **cm-'. Octahedral coordination of this complex is postulated from diffusereflectance data which show characteristic bands at 13700 cm<sup>-1</sup> (** $1A_{1g}$ **-** $\rightarrow$  $1 T_{1g}$ ) and  $21300 \text{ cm}^{-1}$  ( $T_{2g} \rightarrow \pi^*$  C.T.) [22]. The thermogravimetry and DSC **in air show that the two molecules of water are evolved between 155 and**  230°C (in only one endothermic process) (calc.: 10.65%; found: 10.4%). **The anhydrous compound starts to decompose rapidly at 28O"C, and leads to the oxide Fez03 (talc.: 23.62%; found: 23.6%) through an exothermic process; in an atmosphere of N, the initial decomposition temperature is delayed (320°C) and the residue does not reach constant weight.** 



Fig. 2. TG of bis(pyrazine-2-carboxylate)metal(II) compounds in nitrogen.

# *Bis(pyrazine-2-carbosyla to) co balt(II)*

**\_A yellow-orange compound precipitates from aqueous solution with the**   $simplest$  formula  $Co(C_{5}H_{3}N_{2}O_{2})_{2} \cdot 2 H_{2}O$  [calc. (%): C 35.20, H 2.95, **N 16.42, Co 17,27, 0 28.14; found (W): C 35.7, H 2.9, N 15.9, Co 17.5 (by TG in air), 0. 28.0 (by difference)]. The absorption bands at 1630-1350**  cm<sup>-1</sup> in the IR spectrum, and at 9100 cm<sup>-1</sup>  $({}^{4}T_{1g} \rightarrow {}^{4}T_{2g})$ -20400 cm<sup>-1</sup>  $[^{4}T_{1g} \rightarrow ^{4}T_{1g}(P)]$  shown in the diffuse-reflectance spectrum allows the hypo**thesis of a covalently bound cobalt(II)-carboxylic group and an octahedral coordination [22]. Also in this complex, the two molecules of water are**  evolved in one step [calc.: 10.55%; found: 10.8% (by TG in air)] between **170-22O"C, while the decomposition process takes place in the temperature**  range 300 $-410^{\circ}$ C (315<sup>o</sup>C  $\rightarrow$  in an atmosphere of N<sub>2</sub>), giving the oxide CoO **(talc.: 21.96%; found: 22.3%). The thermal decomposition trend is confirmed by the DSC curve.** 

## *Bis(pyrazine-2-carboxylato) nickel(H)*

**X pale light-blue compound precipitates from aqueous solution. The sim**plest formula is  $Ni(C_5H_3N_2O_2)_2 \cdot 2H_2O$  according to elemental and thermogravimetric analysis [calc. (%): C 35.23, H 2.96, N 16.43, Ni 17.22, O 28.16;



Fig. 3. DSC of bis(pyrazine-2-carboxylate)metal(II) compounds in air.

**found (%): C 35.1, H 3.0, N 16.5, Ni 17.1 (by TG in air), 0 28.3 (by difference)]. Its IR spectrum is virtually identical to the others described previously, suggesting the presence of a bridging carboxylate group (ucoo at 1630-1360 cm-'). The electronic spectrum of this complex eshibits absorp**tion bands at 11000 cm<sup>-1</sup> ( ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ ), 16100-17000 cm<sup>-1</sup> [ ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ ] <sup>3</sup> $T_{1g}$  (F)] and 26700 cm<sup>-1</sup> [<sup>3</sup> $A_{2g} \rightarrow$  <sup>3</sup> $T_{1g}$  (P)], according to the data reported by Matthews et al. [23] for the octahedral nickel(II)-dipicolinate complex.

**This compound loses its water molecules in a single step (cal.: 10.56%; found: 10.9%) in the range 185-235"C, as confirmed by the endothermic peak in the DSC curve. The anhydrous compound is stable up to 310°C after which it decomposes through some unresolved steps leading to NiO (talc.: 21.91%; found: 21.8%) at 390°C (TG in air). This oxidative decomposition is proved by the exothermic peak that appears in the DSC curve. The**  TG in an atmosphere of N<sub>2</sub> shows an unchanged initial decomposition tem**perature (310" C).** 

### *Bis(py razine-2-carbox yla to) copper(U)*

**A light-blue compound precipitates from aqueous solution with the simplest formula Cu(C<sub>5</sub>H<sub>3</sub>N<sub>2</sub>O<sub>2</sub>)<sub>2</sub> · 2 H<sub>2</sub>O) [calc. (%): C 34.74, H 2.91, N 16.20, Cu 18.38, 0 27.77; found (%): C 35.0, H 2.9, N 16.0, Cu 18.2 (by TG in** 

air), O 27.9 (by difference)]. Characteristic absorption bands appear in the IR sprectrum at  $1640-1350$  cm<sup>-1</sup> ( $v_{\text{COO}}$ ) and in the diffuse-reflectance spectrum at 15100 cm<sup>-1</sup> (metal ion  $d \cdot d$  transition) and 25600 cm<sup>-1</sup> ( $c_g \rightarrow$  $\pi$ <sup>\*</sup>C.T. [22]. The TG in air shows one step corresponding to the loss of two water molecules (calc.: 10.41%; found: 10.1%) in the range  $90-120^{\circ}$ C and the oxidative decomposition process (285-320 $^{\circ}$ C) leads to CuO (calc.: 23.00%; found:  $22.8\%$ ); the beginning of the latter process in the TG curve, obtained in an atmosphere of  $N_2$ , is practically unchanged. The DSC curve confirms the thermal decomposition trend of the complex.

# $Bis(pyr)$ azine-2-carboxylato) zinc $(II)$

A white compound precipitates from aqueous solution with the simplest formula  $Zn(C_5H_3N_2O_2)_2$  - 2 H<sub>2</sub>O according to elemental and thermogravimetric analysis [calc. (%): C 34.55, H 2.90, N 16.12, Zn 18.81, O 27.62; found (%): C 34.8, H 3.0, N 15.9, Zn 19.1 (by TG in air), O 27.2 (by difference)]. Its IR spectrum is similar to the others described previously and shows  $r_{\text{COO}}$ absorption bands at  $1630-1360$  cm<sup>-1</sup>, while no absorption bands are present in the visible reflectance spectrum. The thermogravimetry and DSC in air show that the two water molecules are evolved in the range  $140-195^{\circ}$ C (calc.:  $10.36\%$ ; found:  $10.1\%$ ); the decomposition of the anhydrous compound starts at  $275^{\circ}$ C and the exothermic process leads to  $ZnO$  at  $515^{\circ}$ C (calc.: 23.41%; found: 23.8%); in an atmosphere of  $N_2$  the initial decomposition temperature is delayed (285°C) and the residue does not reach constant weight.

### **CONCLUSION**

**Pyrazine-2-carboxylic acid, because of the carboxylic group in the**  $\alpha$  **posi**tion, can act as chelating agent forming a very stable five-membered ring [24]. The spectroscopic data confirm this hypothesis showing the  $N-M-O$ sequence of the bond in all analysed compounds. In fact the IR spectrum of perazine-2-carboxylic acid shows very intense absorption bands centred around 1700 cm<sup>-1</sup> and just below 1300 cm<sup>-1</sup> which are characteristic of a free carboxylic group [21]; these absorption bands are shifted to a shorter wave-number ( $\leq 1650$  cm<sup>-1</sup>) and to a higher wave-number ( $\geq 1350$  cm<sup>-1</sup>), respectively, consistent with a covalently bound  $-COO$  group [7,21]. The



**diffuse-reflectance spectra agree with our hypothesis by analogy with the**  spectrochemical series of the frequencies [25], and suggests an octahedral configuration about the metal ion, especially for the  $Mn(II)$ ,  $Fe(II)$ ,  $Co(II)$ **and Ni(II) derivatives (21-23) which probably have a structure of the type shown above with the pyrazinoic groups in a trans-planar position. In the case of the copper(I1) complex the water is more weakly bound and there is probably a tetragonal distortion along the copper-water axis.** 

**The following thermal stability order for the examined divalent metal ions**  has been calculated by the experimental data of TG in an atmosphere of N<sub>2</sub>  $\text{(initial decomposition } temperature): \text{(Mn(II)} > \text{Fe(II)} > \text{Co(II)} \geq \text{Ni(II)} > 0$ **Cu(II) < Zn(I1); this is in agreement with the literature [26-281. The general series found by Irving and Williams [ 291 for the stability of similar complexes in solution is practically the reverse of the above series for the thermal stability; this can be explained on the basis that the strength of intermolecular bonds plays a notable part in the thermal stability of the solid compounds [ 261.** 

#### **REFEREXCES**

- 1 H. Ley, C. Schwarte and O. Munnich, Ber., 57 (1924) 349.
- **2 W.D. Luz and S. Fallab, Helv. Chim. Acta, 39 (1956) 1163.**
- **3 E.S. Gould, J. Am. Chem. Sot., Si (1965) -1'730.**
- **-1 H. Hartkamp, Z. Anal. Chem., 231 (196i) 161.**
- **5 R.L. Dutta and S. Ghosh. J. Ind. Chem. Sot.. -1-l (196'7) 290.**
- **6 E-R. Dockal. E.T. Everhart and E.S. Gould. J. Am. Chem. Sot.. 93 (19il) 5661.**
- **7 W. Jlatthcws and R.A. Walton. Inorg. Chem., 10 (1971) 1433.**
- **X E-S. Gould. J. Am. Chem. Sot., 94** *(19i2)* **~1360.**
- 9 A. Tenhunen, Suom. Kemistil. B, 45 (1972) 76.
- 10 A. Tenhunen, Acta Chem. Scand., 26 (1972) 1291.
- **11 J-P. Xntinclli and M.R. Paris. C. R. Acad. Sci., Paris.** *3-i-l (19i2)* **51.**
- **12 P-P. Richard. D. Tran Qui and E.F. Bertaut. Acta Crystallog;., Sect. B, 29 (1973) 1111.**
- 13 D.P. Murtha and R.A. Walton, Inorg. Chem., 12 (1973) 368.
- 14 G.S. Sanyal and S. Mookherjea, Z. Anal. Chem., 276 (1975) 71.
- 1.5 **J.C. Ringen, Polarographic Study of Metal Chelates or Pyrazinecarbnxylic** Acids **and**  Related Compounds, City University, New York, 1976.
- **16 Q. De Sa and B. Ncto. Proc. 15th Rare Earth Conf-, 1 (1976) 186.**
- 17 P.P. Singh, O.P. Shukla and J.N. Seth, Indian J. Chem., 14 A (1976) 684.
- **IS P.P. Singh, S.X. Khan and J.N. Seth, Indian J. Chem., 11 A (19'76) S12.**
- 19 A.L. Magri, F. Balestrieri, E. Chiacchierini, A.D. Magri and A. Panzanelli, Ann. Chim. **(Rome). GH (1978) 565.**
- 20 A.L. Magri, A.D. Magri, F. Balestrieri, E. Chiacchierini and G. Rossello, Ann. Chim. **(Rome), 69 (1979) dS9.**
- **21 A.B.P. Lever, J. Lewis and R.S. Nyholm, J. Chem. Sot-, (1962) 5262.**
- **2" A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier. Amsterdam, 196S.**
- **23 R.iV. lklatthews, A.D. Hamer, D.L. Hoof. D-G. Tisley and R-A. Walton, J. Chem. SOC., (1973) 1035.**
- 2.1 R.W. Parry and R.N. Keller, in J.C. Bailar (Ed.), The Chemistry of the Coordination **Compounds, No. 131, Reinhold, New York, 1956.**
- **23 C.K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press, London, 1962.**
- **26 1V.W. Wcndlandt. and G.R. Horton, Anal. Chem., 34 (1962) 1098.**
- **27 W\_\V\;. Wendlandt, J.H. Van Tassel and G-R. Horton, Anal. Chim. Acta, 23 (1960) 332.**
- **2~ G. D'Ascenzo, U. Biader and G. De Angelis, Anal. Chim. Acta. 58 (1972) 173.**
- **119 H\_ Irving and R.J.P. Williams, J. Chem.** SOC., (1953) 3192.