THERMAL DECOMPOSITION STUDIES. PART XIII. KINETICS OF THE THERMAL DECOMPOSITION OF THE OXALATES OF THE RARE EARTHS, YTTRIUM AND TITANIUM

K-G. NAIR, V.V. SREERAJAN and V.S.V. NAYAR

Travancore Titanium Products Ltd., Trivandrum-695 021 (India)

C.G.R. NAIR *

Department of Chemistry, University of Iierala. Z'bivandrum-695 001 (India)

(Received 10 January 1980)

-ABSTRACT

The thermal decomposition behaviour of the oxalates of La, Ce, Pr, Nd, Sm, Gd, Dy, Y and Ti was studied in detail by TG, DTG and DTA. The kinetic parameters (energy and **entropy of activation) for the important stages of dehydration and decomposition were** evaluated from TG traces by using the Coats-Redfern equation and the modified Coats-**Redfern equation_**

INTRODUCTION

In the course of a programme to study the thermal decomposition of intimate mixtures of titanium oxalate and oxalates of lanthanides as a feasible route, inter alia, towards the synthesis of mixed oxides of titanium and lanthanides, it became desirable to investigate the decomposition pattern of each individual oxalate. Although some extensive studies had been carried out earlier on the thermal behaviour of oxalates of lanthanides and yttrium, most of these studies were purely phenomenological [l-14]. Only a few kinetic studies have been carried out [9,15,16]. A scrutiny of the results published by earlier workers [5-25] revealed several contradictions and con**flicting claims. Only preliminary studies have been carried out [26-331 on the thermal decomposition of titanyl oxalates and some peroxytitanyl oxalates. A systematic study of the kinetics of the thermal decomposition of the oxalates of the rare earths, yttrium and titanium was therefore undertaken. In the present paper, we report the results of our studies on the oxalates of La, Ce, Pr, Nd, Sm, Gd, Dy, Y and Ti in an atmosphere of static air. (Static air was employed in order to simulate the conditions programmed for the synthesis of mixed metal oxides via oxalate decomposition.)**

^{*} To whom correspondence should be addressed.

EXPERIMENTAL

Preparation of rare earth oxalates

The oxalates of La, Ce, Pr, Nd, Sm, **Gd,** Dy and Y were prepared by standard methods [5,34,35]. The rare earth oxides (about 0.5 g) were dissolved in 5 ml conc. HNO₃. (Dissolution of cerium oxide in nitric acid is facilitated by the addition of 2 ml of 1% hydrofluoric acid which acts as a catalyst [35].) The solutions were diluted to 100 ml and 50 ml of a saturated solution of oxalic acid was added at room temperature (30 \pm 2°C). The solutions were stirred vigorously, heated to boiling and then cooled. The precipitated **oxalates were filtered off and washed with a 2% aqueous solution of oxalic acid, followed by distilled water, alcohol and finally ether before being dried over anhydrous calcium chloride.**

Preparation of titanyl oxalate [36]

Titanium tetrachloride in HCl was hydrolysed by adding slowly to an icecooled solution of 5% aqueous ammonia. The orthotitanic acid formed was filtered and washed repeatedly with cold water until it was free from ammonia. The precipitate was dissolved in a saturated solution of aqueous oxalic acid and evaporated at 50-60" to a small volume. Titanyl oxalate was precipitated when absolute alcohol was added to this solution. The osalate was filtered, washed with alcohol and dried over calcium chloride.

Purity

The purities of the osalates were determined by the analysis of the metals by ignition of weighed samples to the stable oxides. All the osalates of the lanthanides were decahydrates. Yttrium oxalate was obtained as a nonahydrate. Titanyl oxalate had the composition $TiO(C_2O_4) \cdot 3.5 H_2O$. Analysis data are given in Table 1.

TABLE 1

Analysis data

Apparatus [3 7,381

A Stanton simultaneous TG-DTA thermobalance, model TROl, with 0.1 mg sensitivity was used. A heating rate of 4° C min⁻¹ and a chart speed of 3 in. h^{-1} were used throughout and sample masses of 30 mg were uniformly employed to give consistent and comparable data. Samples were finely powdered in an agate mortar and placed in deep cylindrical dimpled Pt crucibles (8 mm deep and 6.2 mm diameter). The sample temperature was measured directly by a Pt/Pt-Rh thermocouple, the head of which was placed in the dimple of the crucible. As reference substance for DTA, α -Al₂O₃ was used.

Pyrolysis experiments

Independent pyrolyses were carried out by heating weighed samples of the oxalates in open porcelain crucibles to a temperature of $\sim 800^{\circ}$ C. The percentage loss of weight after completion of the pyrolysis was calculated from the weights of the residues_

TREATNEXT OF DATA

The instrumental TG curves were redrawn as the mass vs. temperature (TG) curves as well as the rate of loss of mass vs. temperature (DTG) curves. The curves were drawn using standard curve sets. The plateaux and reaction intervals in TG, the peak temperatures in DTG and DTX, and the peak widths in DTA were noted and compared.

Determination of the order of reaction

The order of reaction, n , was found using the equation suggested by Horowitz and Metzger

$$
C_{\rm s} = n^{1/(1-n)} \tag{1}
$$

where *n* is the order of the reaction, C_s is the weight fraction present at the temperature T_s corresponding to the DTG peak. As described earlier [38], a "master curve" was constructed and n obtained from the determined values of $C_{\rm s}$.

Evaluation of the *kinetic parameters*

T]le kinetic parameters for the dehydration and main decomposition stages were evaluated using the Coats-Redfern equation [391 as well as the $_{\rm modified}$ Coats—Redfern equation [40]. The Coats—Redfern equation was used in the form

$$
\log \frac{g(\alpha)}{T^2} = \log \frac{AR}{\phi E} - \frac{E}{2 \cdot \sqrt{Q3RT}}
$$
 (2)

Compound	Plateaux in TG $(^{\circ}C)$	Peaks in DTG (^0C) ^a	Reaction intervals in TG $(^{\circ}C)$	Peaks in DTA $(^{\circ}C)$ ^a	Peak widths in DTA $(^{\circ}C)$
Lanthanum oxalate	Up to 120 220—380 $180 - 660$ Above 760	185: 412s 470 v(sh) $695 \; m(br)$	$120 - 220$ 380 - 460 460–480 660-760	165 endo s 380 exo s 455 ехо $\overline{\mathbf{v}}$ 705 exo m(br)	100 - 205 $365 - 415$ $425 - 480$ $685 - 750$
Cerium oxalate	Up to 170 $250 - 270$ Above 370	211s $3+1s$	$170 - 260$ $270 - 370$	187 endo s 320 exo s	$140 - 220$ 280-380
Praseodymium oxalate	Up to 140 $240 - 380$ $480 - 500$ Above 560	200 _s 408 _s 466 w(sh) 529 w	$140 - 240$ $380 - 450$ $450 - 480$ $500 - 560$	185 endo s 385 exo s 415 ехо \mathbf{m} 475 exo w	$120 - 225$ $355 - 400$ $400 - 465$ $465 - 515$
Neodymium oxalate	Up to 150 $230 - 250$ $290 - 390$ $530 - 590$ Above 680	198 _s 261 _m 422s 495 m(br) 620 m(br)	$150 - 230$ $250 - 290$ $390 - 160$ $460 - 530$ 590-680	197 endo s 259 endo m 405 exo s 535 exo s(br) 650 exo w(br)	$125 - 225$ $225 - 305$ $395 - 455$ $465 - 605$ $625 - 705$
Samarium oxalate	Up to 140 $220 - 240$ $300 - 380$ $540 - 570$ Above 610	200 s 269 m 428s 591 m	$140 - 220$ $240 - 300$ $380 - 540$ $570 - 640$	185 endo m 265 endo m 408 exo s 560 exo \mathbf{s}	$140 - 235$ $235 - 290$ $385 - 425$ $490 - 580$
Gadolinium oxalate	Up to 120 $280 - 380$ $540 - 560$ Above 640	163 _m 226 _m 270s 438s 590 _m	$120 - 200$ $200 - 245$ $245 - 280$ $380 - 540$ $560 - 640$	168 endo m 225 endo m 265 endo s 427 exo s 583 exo s	$115 - 195$ $205 - 235$ $245 - 285$ $-105 - 115$ $505 - 595$
Dysprosium oxalate	Up to 100 $160 - 170$ $210 - 330$ $-190 - 500$ Above 650	138 _s 197 m 363 m 430s 522 m	$100 - 160$ $170 - 210$ $330 - 380$ $380 - 490$ 500—650	145 endo s 225 endo w 355 endo w 420 exo s 525 exo s	110–165 $185 - 245$ $325 - 365$ $395 - 440$ $480 - 550$
Yttrium oxalate	Up to 90 $220 - 360$ $+80 - 550$ Above 650	132s 187 m 383 m 427s 601 m	90—105 $105 - 220$ $360 - 395$ $395 - 180$ $550 - 650$	153 endo m 195 endo w 392 endo m 425 exo s 605 ехо m	110–175 $185 - 230$ $350 - 400$ $400 - 460$ 530-620
Titanyl oxalate	Up to 60 $330 - 500$ Above 580	105 _m 296s 538 m	$60 - 170$ $170 - 330$ $500 - 580$	110 endo w 290 endo s 320 exo m 540 exo m	$60 - 180$ $180 - 305$ $305 - 340$ $500 - 570$

Plateaux, peaks, reaction intervals and peak widths in TG, DTG and DTA curves

TABLE 2

" Abbreviations: exo = exothermic; endo = endothermic; $w = weak$; $m = medium$; s = strong; $vs = very strong$; $sh = shoulder$; $br = broad$.

ţ

J.

TABLE 4
Kinetic part

Sm							10 ⁷ 10 ¹⁶ 105				
o xalate											
	.≥			81.1 261.1 248.1	$\frac{25}{10000}$					0.9996 0.9961 0.9875 0.9964	0.9991 0.9961 0.9868 0.9961
ಕ	$L = E \ge$										
oxalate											
					3.13 3.16 3.50 3.57 3.04						
ά					-33.389 -3.389 -1.20						0.9982 0.994082 0.994082 0.0.9982 0.0.0.9982 0.0.0.9982
oxalate											
	LEEZ> LEEZ>	385308 25355 25638 25855					$1.168 \times 1.11 \times 1.$			0.9997 0.9983 0.9945 0.9974 0.9972	0.9997 0.9979 0.9944 0.9974 0.9972
oxalate											
					7.30046 0.0046 0.0046						
F		105 286 588	28.0 70.8		1.301 6.18	$\frac{1}{2}$	4.319 $2.48 \times$	-225.6 -177.1	$-23.1.8$ -185.1	0.9960 0.9880	0.9946 0.9867
oxalale							10 ¹				

 a C–R = Coats–Redfern equation; M C–R = modified Coats–Redfern equation.
 b Calculation of thermal parameters was not done due to poor resolution of the curve.

259

where

 $g(\alpha) = -\ln(1 - \alpha)$ when $n = 1$ and

$$
g(\alpha) = \frac{1 - (1 - \alpha)^{1-n}}{1-n}
$$
 when $n \neq 1$

and A is the pre-exponential factor, ϕ the heating rate, E the energy of activation, R the gas constant and T the absolute temperature.

The modified Coats-Redfern equation [40] was used in the form

$$
\log \frac{g(\alpha)}{T^3} = \log \left(\frac{kR}{h\phi E}\right) + \frac{\Delta S}{2.303R} - \frac{E}{2.303RT}
$$
 (3)

where k is the Boltzmann constant, h the Planck constant and ΔS the entropy of activation_

Plotting the left-hand side of eqns. (2) and (3) against $1/T$ gave straight line graphs with slopes of $-E/2.303$ *R*. The activation energy, *E*, was thus calculated from the slope. A was calculated from the intercept of the Coats-Redfern plot, while ΔS was calculated from the intercept of the modified Coats-Redfern plot. A knowledge of A enables the evaluation of ΔS and vice versa, as has been shown by earlier workers [26], using the equation

$$
A = \frac{k}{h} T_s e^{\Delta S/R} \tag{4}
$$

RESULTS

The plateaus and reaction intervals in TG, the peak temperatures in DTG and DTA, and the peak widths in DTA are given in Table 2. Pyrolysis data are presented in Table 3 and the kinetic parameters in Table 4.

THERMAL BEHAVIOUR

Oxalates of the rare earths and yttrium

Lanthanum oxalate shows a stability plateau in TG up to 120° C and four DTG peaks at 185, 412, 470 and 695° C; the DTA peaks are at 165, 380, 455 and 705° C. Dehydration takes place in the temperature range $120-$ 220°C in a single step. The endothermic DTA peak at 165°C (Stage I) corresponds to this dehydration. The decomposition starts at 380°C and an intermediate compound which appears to be La_2O_3 , $2 CO_2$ is formed at 460°C (Stage II). The oxycarbonate $La₂O₃$, CO₂ is formed (Stage III) at 480" C and is stable up to 660°C. Further decomposition commences at 660°C and the oxide La_2O_3 is obtained above 760°C. The exothermic peak in DTA at 380°C denotes the oxidative decomposition and the two peaks (eso) at 455 and 705°C denote the decomposition of the oxycarbonates.

260

Cerous oxalate is stable up to 170°C and the dehydration starts at this temperature. Dehydration is completed in a single stage (Stage I) as in the case of lanthanum and the single endothermic DTA peak at 187^oC, which **corresponds to the DTG peak at 211"C, denotes the dehydration. The anhydrous oxalate is stable between 250 and 270°C after which decomposition starts. The decomposition is completed in the range 270-370°C and the** stable CeO₂ is formed above 370°C. The strong exothermic DTA peak at **320°C represents this oxidative decomposition. In this case, the oxalate appears to be directly converted to the Ce(IV) oxide without forming the oxycarbonate. This could mean either the absence of an intervening carbonate stage or a transient existence for this phase which escapes detection under the present conditions. This unique behaviour, shown only by cerous oxalate, distinguishes it from the other rare earth oxalates in the present study.**

Praseodymium oxalate is stable up to 140°C and dehydration starts at this temperature, continuing up to 240" C. The DTG peak is at 200" C. The endothermic DTA peak at 185°C represents this dehydration (Stage I). The anhydrous praseodymium oxalate is stable in the range 240-380°C and it undergoes decomposition at 380-450,450-480 and 500-560°C. The three DTG peaks at 408,466 and 529°C correspond to the three exothermic DTA peaks at 385, 415 and 475°C and correspond to the decomposition of the anhydrous oxalate in three stages to the oxide. The final product is $Pr₆O₁₁$. **Stages II and III are very close and the intermediate product has only a transient existence. The identification of the product after Stage II was** therefore not possible. The product after Stage III corresponds to Pr_2O_3 , co.

Neodymium oxalate decahydrate is stable up to 150°C and the dehydration starts at this temperature resulting in a horizontal weight level corresponding to $Nd_2(C_2O_4)_3 \cdot 3 H_2O$. The trihydrate loses water in the tempera**ture range 250-290°C. The DTG peaks at 198 and 261°C and the corresponding DTA endothermic peaks at 197 and 259°C represent the two dehydration stages (Stages I and II). There is excellent correspondence between DTG and DTA as far as the first two peaks are concerned. At the first stage, the decahydrate is converted to the trihydrate which, at the second stage, forms the anhydrous salt. The anhydrous osalate is stable in the range 290-390" C and begins to decompose at 390" C. A decomposition peak occurs at 422°C in DTG and at 405°C (exothermic) in DTX. At this stage, the composition corresponds roughly to partial decomposition of the oxalate.**

A broad DTA exothermic peak occurs in the region 465-605"C and there is a broad DTG peak also in this region. This could represent the formation of Nd_2O_3 , $2 CO_2$ (Stage III). At 530°C, the composition is Nd_2O_3 , CO_2 **(Stage IV).**

The final decomposition reaction starts at 590°C and the oside is formed at 680°C. The exothermic DTA peak at 65O"C, which corresponds roughly to the DTG peak at 62O"C, denotes this decomposition. The final residue after heating up to 700° C was analysed and found to be $Nd₂O₃$.

Samarium oxalate is stable up to 140°C and dehydration starts at this

temperature. The two DTG peaks at 200 and 269° C, which have close correspondence with the two endothermic DTA peaks at 185 and 265"C, correspond to the two dehydration stages (Stages I and II). The first of these stages represents the transition from $Sm_2(C_2O_4)_3 \cdot 10 H_2O$ to $Sm_2(C_2O_4)_3$. 3.5 H₂O and the second stage refers to the transition to the anhydrous oxalate. The anhydrous oxalate is stable between 300 and 380 $^{\circ}$ C and undergoes decomposition in two stages (Stages III and IV). The DTG peak at 428° C and the exothermic DTA peak at 408° C correspond to the first-stage decomposition. The product at this stage (Stage III) has the composition $Sm₂O₃$, CO₂. This oxycarbonate then decomposes to the oxide $Sm₂O₃$ (Stage IV). The DTG peak at 591° C and the exothermic DTA peak at 560° C denote this decomposition_

Gadolinium oxalate is stable up to 120° C and dehydration starts at this temperature. The three DTG peaks at 163, 226 and 270° C, which are closely paralleled by the three endothermic **DTA** peaks at **168, 225** and 265"C, correspond to the three dehydration stages I, II and III (10 H₂O \rightarrow 6 H₂O \rightarrow $4 H₂O \rightarrow$ anhydrous salt). The anhydrous oxalate is stable between 280 and 380" C and undergoes decomposition in two stages. The DTG peak at 438" C and the esothermic DTA peak at 427°C correspond to the first stage of decomposition (Stage IV). The product after this stage appears to be Gd_2O_3 , $CO₂$. This then decomposes to the oxide $Gd₂O₃$ (Stage V). The DTG peak at. 590°C and the esothermic DTX peak at 583°C represent the final stage of decomposition.

Dysprosium oxalate appears to be stable up to 100° C when dehydration begins. The three DTG peaks at 138, 197 and 363° C, which correspond with the three endothermic DTA peaks at 145, 225 and 355° C, refer to the Stages I, II and III of dehydration (10 H₂O \rightarrow 4 H₂O \rightarrow 2 H₂O \rightarrow anhydrous salt). The tetrahydrate is stable in the range 210-330". The anhydrous oxalate undergoes decomposition in two stages (Stages IV and V). The DTG peak at 430° C and exothermic DTA peak at 420° C represent the first of these (Stage IV). The product obtained at this stage has the rough composition Dy_2O_3 , CO, which further decomposes to the oxide Dy_2O_3 (Stage V). The DTG peak at 522° C and the exothermic DTA peak at 525° C represent this stage of decomposition.

Yttrium oxalate is stable up to 90° C and dehydration begins at this temperature. The three DTG peaks at 132, 187 and 383°C, paralleled by the three endothermic DTA peaks at 153, 195 and 392"C, correspond to Stages I, II and III of dehydration (9 H₂O \rightarrow 4 H₂O \rightarrow 2 H₂O \rightarrow anhydrous salt). The dihydrate is stable in the range 220-360°C. The anhydrous oxalate undergoes decomposition in two stages (Stages IV and V). The DTG peak at 427° C and the exothermic DTA peak at 425° C represent the first of these stages (Stage IV). The product obtained after this stage appears to be Y_2O_3 , $CO₂$. This further decomposes to the oxide Y₂O₃ (Stage V). The DTG peak at 601°C and the esothermic DTA peak at 605°C represent this stage of decomposition.

Titanyl oxalate, $TiO(C_2O_4) \cdot 3.5 H_2O$, is stable up to 60° C and the dehydration starts at about this temperature. The DTG peak is at 105°C. The endothermic DTA peak at 110° C represents this dehydration (Stage I)

leading to the formation of the dihydrate, $TiO(C_1O_4) \cdot 2 H_2O$. The dihydrate begins further dehydration accompanied by decomposition. The DTG peak at 296°C represents this stage (Stage II). In DTA, this **stage is rcpre**sented by two close-lying peaks, an endothermic peak at 290°C and an exothermic peak at 320° C. The phase formed at 330° C is a basic carbonate of titanium with the empirical formula $Ti₃CO₈$ or $TiO(CO₃)$, $2 TiO₂$ and is stable up to 500° C. Above this temperature, it decomposes to give $TiO₂$. The DTG peak at 538°C, paralleled by the exothermic peak at 540°C, corresponds to this final stage of decomposition (Stage III).

Mass loss clata

Mass loss data are given in Table 3. The final residue is the oxide M_2O_3 for $M = La$, Nd, Sm, Gd, Dy and Y; it is MO₂ for Ce and Ti and $Pr₆O₁₁$ for $Pr₁$. The mass loss data from TG, as well as from independent pyrolysis studies. agree closely with calculated values in all cases. It may be seen from Table 3 that the agreement is satisfactory between the calculated and observed (from TG) values for mass loss data for intermediate stages as well, wherever intermediate stages are sufficiently well-defined.

h'irlctic parameter-s

The kinetic parameters evaluated from the TG traces are given in Table 4 . The values of E, ΔS and A using the Coats-Redfern equation and a similar set using the modified Coats-Redfern equation are presented. The correlation coefficients in each case are also shown.

DISCUSSION

Thermal behaviour

A survey of the results in Tables 2 and 3 reveals an interesting **fnc~. Thr** hydrated oxalates of the lighter lanthanides (La, Ce and Pr) undergo singlestage dehydration from the decahydrate to the anhydrous salt. In Nd and Sm, we have two-stage dehydration, whereas in the heavier lanthanidcs Gd and Dy, we have three-stage dehydration. As expected, Y falls in line with the heavier lanthanides [41] and shows a three-stage dehydration. It is interesting to note that these definitive trends observed in the thermal behaviour are compatible with the well-known increase in coordination ability (e.g. hydration energies) of the lanthanide M³⁺ ion from La to Lu.

The final residues are normal oxides, M_2O_3 , in the case of La, Nd, Sm, Gd, Dy and Y. In the case of Pr, it is Pr_6O_{11} and for Ce it is CeO_2 . This is not surprising because, under open static air conditions, one expects the most stable oxide to be formed, which is $Pr₆O₁₁$ for Pr and CeO₂ for Ce. The residue for titanyl oxalate is $TiO₂$ as expected.

A similar, although less clear-cut, tendency could be noted as regards the final decomposition to the oxide stage. The oxide stage is attained at 760° C for La, 680°C for Nd and at about 640°C for Sm, Gd, Dy and Y. This indicates that the thermal stability of the carbonates decreases marginally from La through Nd to Sm, Gd, Dy and Y. Such an order would reflect the increasing Lewis acidities of the M^{3+} ions from La³⁺ to Lu³⁺. The exceptional behaviour in the case of Ce and Pr could be attributed to the formation of oxides of formulae other than M_2O_3 .

The DTA peaks for dehydration are endothermic as expected. In the case of further decompositions, whereas one may expect endothermicity as a general tendency, one finds exothermicity in all the cases. This may be explained by osidation processes (such as combustion of the liberated **CO** to $CO₂$) accompanying the decomposition of the oxalates in the oxidizing atmosphere (static air) employed for the studies. (It is well known that $CaC₂O₊$ gives exothermic DTA peaks in air, whereas in nitrogen, the DTA peaks reveal their true endothermicity.) In the present studies, static air was deliberately employed as mentioned earlier.

Kinetic parameters

Lanthanides and *yttrium*

The first dehydration stages are found to have *E* values of the order of \sim 100 kJ mole⁻¹. The second dehydration stages also generally have values of 100 -200 kJ mole⁻¹, although the third dehydration stages (e.g. Gd and Y) have higher values (300 -450 kJ mole⁻¹). This implies that the dehydration of the lower hydrate is kinetically less favoured than that of the higher hydrates_

The decomposition stage, especially the final ones leading to oxide formation, show higher values of $E(700-800 \text{ kJ mole}^{-1})$. This is to be expected because these decomposition stages involve rupture of stronger bonds than in the case of dehydration. It is difficult to draw definitive conclusions from ΔS and A data which must await further theoretical developments in this field. One may note, however, that the dehydrations generally tend to have lower values of ΔS and A. A negative value for ΔS further shows a more ordered activated complex and a less than normally fast reaction. On the other hand, positive values of ΔS indicate less ordered activated complexes and faster than normal reactions [421.

Titanyl oxala **te**

The first dehydration stage of titanyl osalate has a low value for the energy of activation (\sim 30 kJ mole⁻¹), whereas the second stage has a slightly higher value (\sim 70 kJ mole⁻¹). It may be noted that the order of magnitude of both values is the same as, or one less than, that for similar dehydration stages of lanthanide oxalates.

The values for the entropy of activation for the dehydration stages of hydrated titanyl osalate are found to be negative, indicating that the activated comples is more ordered than the reactants and that the reaction is less than normally fast [421.

ACKNOWLEDGEMENTS

We thank Dr. P.M. Madhusudanan and Dr. P. Indrasenan for helpful discussions and the Space Science and Technology Centre, Trivandrum-22 **for instrumental facilities made available to us.**

REFERENCES

- 1 **H.A. Flaschka and A.J. Barnard Jr. (Eds.), Chelates in Analytical Chemistry, Vol. I, Marcel Dekker, New York, 1967.**
- 1 **W.W. Wendlandt, Thermal Methods of Analysis, Interscience, New York, 1964.**
- 3 R.F. Schwenker, Jr. and P.D. Garn (Eds.), Thermal Analysis, Vols. 1 and 2, Academi **Press, New York, 1969.**
- **4 C. Duval, Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam, 1963.**
- **W.W. Wendlandt, Anal. Chem., 30 (1958) 58.**
- **; W.W. Wendlandt, Anal. Chem., 31 (1959) 408.**
- **7 W.W. Wendlandt, T.D.** *George* **and G-R. Horton, J. Inorg. Nucl. Chem.,** *1'7 (1961) 2i3.*
- **g** *_A.* **Glasner and M. Steinberg, J. Inorg. Nucl. Chem., 32 (1961) 39.**
- **9 A. Glasner and M. Steinberg, J. Inorg. Nucl. Chem.. 16 (1960)** *2'79.*
- **10** *A.* **Glasner, E. Levy and M. Steinberg, J. Inorg. Nucl. Chem., 25 (1963) 1119.**
- **11 =\. Glasner and M. Steinberg. J. Inorg. Nucl. Chem.. 32 (1961) 136.**
- **1" _A_ Glasner, E. Levy and MI. Steinberg. J. Inorg. Nucl. Chem., 25 (19G3) l-4 15.**
- **13 A. Glasner. TalanLa, 11 (1964) 405.**
- **1-I O.K. Srivastava and A.R. Vasudeva Murthy, Curr. Sci.. 39 (1960) 450.**
- **15 V.V. Suhba Rao, R.V.G. Rao and X.B. Biswas, J. Inorg. Nucl. Chem.. 27 (1965) 23%.**
- **16 V.M. Padmanabhan, S.C. Saraiya and A.K. Sundaram, J. Inorg. Nucl. Chem., 12 f 19tiO) 336.**
- **17 R.** Aloebius. W. **Dietzold and F. RIatthes, J. Iuorg.** Kucl. **Chem., 28 (19GG.l I S-Ii.**
- **iS R. XItibius and F. blatthes. J. Inorg. Nucl. Chem., 28 (19GG) 1601.**
- **19 J-K. Marsh. J. Chem. Sot., (1943) 40.**
- **20 R. Miihius. Wiss. Z. Tech. Hochsch. Chem. Carl Schorlemmer Leena-Merseburg, 6 (1964) 359.**
- **21 S.S. Moosath, J. Abraham and T.V. Swaminathan, Z. Anorg. Allg. Chem.. 324 (1963) 90.**
- **22 S.S. Moosath, J. Abraham and T.V. Swaminathan, Z. Anorg. Allg. Chem., 32-l (1963) 96.**
- 23 Ya.S. Savitskaya, N.N. Tvorogov, S.V. Kalabukhova and L.S. Brykina, Zh. Neorg **Khim.,** i (1962) 2029.
- **'24** P. **Cara and J. Loriers, J. Rech. C.N.R.S.. 39 (195i) IO;.**
- 25 A. Glasner and M. Steinberg, Bull. Res. Counc. Isr., Sect. A, 8 (1959) 174. $\,$
- **'76 H.S. Gopalalirishnamurtll~-, >I. Subha Rae :lnd T.R. Xaray-allnnkutLy. J. Inorp. Nucl. Chenl., 3i** *(19';s) S91_*
- 27 H.S. Gopalakrishnamurthy, M. Subba Rao and T.R. Narayanankutty, Thermochin **~\CLiI. 13 (19i5) 183.**
- 28 H.S. Gopalakrishnamurthy, M. Subba Rao and T.R. Narayanankutty, J. Inorg. Nucl. **Chem.. 38 (1976) 417.**
- **"9 C.Gh. Macrovici and Gh.** idorm-, **Bolyai Ser. Chem.. 1'7 (2) (1972) 5.**
- 30 B.V. Strizhakov, A.V. Lapitskii, L.G. Vlasov and A.I. Tsvetrov, Dokl. Akad. Nauk **SSSR. 133 (1960) 1347.**
- **31 P-K. Gallagher and F. Schrcy, J. Am. &ram. Sot.. 46** t **1963) 367.**
- **3" P-K. Gallagher and J. Thomson. Jr., J. Am. Ceram. Sot.. -1s f 1965) G-l-l.**
- **33 G-L:'. derc and C.C. Pate], J. Inorg. Nucl. Chem.. 20 (1961) 343.**
- 34 W.R. Schoeller and A.R. Powell, The Analysis of Minerals and of the Rarer Elements, Griffin, London, 1955.
- 35 I.M. Kolthoff, P.J. Elving and E.B. Sandell (Eds.). Treatise on Analytical Chemistry. Vol. 8, Part II. Interscience, New York, 1963.
- 36 D.P. Kharkar and C.C. Patel, J. Indian Inst. Sci., Sect. A, 39A (1957) 41.
- 37 J.P. Redfern, in R.A. MacKenzie (Ed.), Differential Thermal Analysis, Vol. I, Academic Press, New York, 1970.
- 38 P.M. Madhusudanan, P.N.K. Nambisan and C.G.R. Nair, Thermochim. Acta, 9 (1974) 1.19.
- 39 A.W. Coats and J.P. Redfern, Nature (London), 201 (1964) 68.
- 40 C.G.R. Nair and P.M. Madusudanan, Curr. Sei., 44 (1975) 212.
- 41 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 1966.
- 42 A.A. Frost and R.G. Pearson, Kinetics and Mechanism, Wiley, New York, 1961, p. 101.