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ABSTRACT 

The use of various parameters calculated from the adsorption isotherm to follow the 
thermal treatment of solids is outlined. The parameters include the variation in the BET-C 
constant, the calculation of the apparent pore volume, the average pore radius and the 
pore size distribution. It is pointed out that the actual character of the adsorption iso- 
therm can be altered by the heat treatment process. Three mechanisms of heat treatment 
are considered, namely, sintering, gasification of solids, and the thermal decomposition 
of crystals. The manner in which the specific surface area may be related to these 
processes is described. 

INTRODUCTION 

The determination of the adsorption isotherm can be used to evaluate the 
surface area of the solid under investigation. The adsorption isotherm usually 
chosen is that of nitrogen gas at -195.8”C. Besides the specific surface area, 
the adsorption isotherm can be used to calculate the mean pore radius or the 
pore size distribution and the total volume of the pores. hlost adsorption iso- 
therm equations (for example the BET equation [l] ) contain an extra 
parameter (in the BET equation the constant C) which is either a function of 
the heat of adsorption or the heat of adsorption itself. Because this param- 
eter most often does not give a good value of the heat of adsorption, it 
remains relatively neglected and the differences ascribed quite reasonably to 
the method of analysis. The process of heat treatment causes alterations in 
the surface area which have often been reported [ 21, and also differences in 
the other parameters calculated from the adsorption isotherm which are less 
often reported [3]. These comments refer to physical adsorption - the heat 
treatment may also cause changes in the catalytic properties of the solid 
residues. 

The heat treatment of solids are generally of two types. In the first the 
solid is treated at a constant temperature - called here isothermal heat treat- 
ment. In the second the solid is treated to a rising temperature programme, 
usually but not always a linear rise of temperature with time. Properly 
handled, both heat treatments can be used to provide kinetic and thermo- 
dynamic data [4]. These treatments can, however, be interrupted, and the 

* This and the following paper form the substance of the Mettler Award lecture delivered 
at the 9th NATAS Conference held in Chicago, 23-26 September 1979. 
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adsorptive properties of the residues investigated to provide evidence about 
the changes in the surface during decomposition. However, even if the 
material does not undergo decomposition, heat treatment can still alter the 
surface properties by the process of sintering. This is both a time and tem- 
perature dependent mechanism and the determination of the surface param- 
eters from the adsorption isotherms can also help in this field [ 51. 

THE ADSORPTION ISOTHERM AND THE BET ANALYSIS 

There are five commonly recognised types of adsorption isotherm [6] - 
three of which exhibit a relatively sharply rising initial portion from which 
the surface area is calculated. The other two isotherms represent the condi- 
tion where adsorbate - adsorbate interaction is more important or of the 
same magnitude as adsorbate - adsorbent interaction. These latter two types 
cannot be ignored in the context of heat treatment as many heat-treated car- 
bons, and some heat-treated osides show this kind of isotherm for the 
adsorption of water vapour [ ‘71. 

The “traditional” equation used to describe the adsorption isotherm is the 
BET equation. The relationship is 

P 1 C-l p =_ + _. -- 
d&l --P) x-nlc -u,c PO 

(1) 

where x is the amount of gas adsorbed at pressure pr x, is the monolayer 
coverage and p,, is the saturated vapour pressure. 

The constant C is a function of the heat of adsorption. The two param- 
eters in the BET equation, X, and C, may then be calculated from the linear 
plot of P/X@, --p) against p/p, in the region of p/p,, = 0.05 - 0.35. The con- 
cept of an actual monolayer existing is however a myth, as it is implicit in 
the BET theory that no layer (and this includes the monolayer) is complete 
until the saturated pressure is reached. The method nevertheless produces 
acceptable values for the monolayer capacity and the specific surface area. 
The values of C are generally large, but do not produce an acceptable value 
for the heat of adsorption, although in a series of samples the variation in the 
value of C will parallel the variation in the heat of adsorption. There are 
however analytical reasons for suspecting the value of C thus obtained [8] _ 

In the first place, it is a function of the relative pressure (p/~~)~ at which the 
statistical monolayer value x, is located on the adsorption isotherm, being 
given by 

-1+Jc 
CPlPoL = c__l 

or 

c = [l - @/PcJmlz 

@/P&l 
(2) 

This produces a very large variation of C with an extremely small variation 
in (p/p& in the low pressure region in which (P/P,,)~ is found. Secondly, 
the two measurements from the BET plot, namely the intercept and the 



slope, contain two factors, l/C and (C - 1)/C and with C large, the first of 
these appears as nearly zero and the second approximates to unity. Attempts 
to calculate C from this analytical method are therefore suspect. However, 
the BET equation can he rearranged to give 

c = _.sP :x>.‘_ 
X-,2X(1 -xx) (3) 

where n = X/X, and X = p/p,. The constant C may therefore best be calcu- 
lated by compiling a table of values of C against values of (p/p,&, using eqn. 
(2) and reading off the value of C corresponding to the experimentally deter- 
mined value of (P/P,,)~. This. avoids the analytical errors in determining C 
mentioned above but conceals the fact that eqn. (3) shows in its application 
that C is not a constant [9] _ This escapes notice in the conventional BET 
plot because l/C -+ 0, and (C - 1)/C G 1, not just for C being constant and 
large, but for C being variable and large. The limits set t.o the BET plot are 
really espressions of the fact that the equation only really produces a curve 
describing the adsorption isotherm up to the top limit of p/p0 e 0.35 and 
that deviations can often be seen beyond this value. This point regarding the 
value of C and the application of eqn. (3) on the adsorption isotherms of a 
series of heat-treated materials is taken up in later parts of this series. 

THE CALCULATION OF THE MEAN PORE RADIUS, THE PORE SIZE 
DISTRIBUTION AND THE TOTAL VOLUME OF THE PORES FROM THE 
XDSORPTION ISOTHERM 

The mean pore radius can be calculated from simple algebra applied to the 
adsorption isotherm [lo]. It can be shown that if the amount adsorbed is 
espressed as a volume of condensed liquid, then 

v 1 
_A=.__ 

s 2 

\\vhere S is the specific surface area, V, is the volume of condensed liquid 
calculated from the amount adsorbed at or near the sat.urated vapour pres- 
sure, and r is the mean pore radius of the pores. It is thus apparent that in the 
heat treatment of a porous material, or a material likely to produce a porous 
matrix, the pore volume V, and the mean pore radius r are useful additional 
factors to be calculated from the adsorption isotherm. The application of the 
Kelvin equation, relating the pressure at which condensation occurs on 
curved surfaces to the radius of curvature, allows a pore size distribution to 
be compiled for heat-treated materials, which contains more detail than just 
quoting the mean pore radius [ lO,ll]. The Kelvin equation takes the form 

-27V cos 8 
log p/p0 = ---;R-T- 

where y = surface tension of adsorbate; V = molar volume of the adsorb&e; 
0 = angle of contact; R = the gas constant; and T = the absolute temperature 
(K). Here p is the pressure at which condensation occurs in pores of radius r. 
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This equation is usually applied to the Type IV isotherms showing hysteresis 
and is applied to the desorption branch of the isotherm on the basis of its 
application to a spherical curved surface. Applied to the adsorption branch 
where condensation occurs in a cylindrical surface, the equation takes the 
form 

lW3PlPcl = 
-yv cos 8 

rRT (6) 

The obstacle to the estimate of cos 8 is removed by assuming that the 
adsorbate condenses onto a surface already covered with an adsorbate layer 
whose amount and thickness is calculated from the BET equation. This 
assumption implies that cos 8 = 1. This of course neglects the point inherent 
in the proof of the BET equation that the monolayer is not complete until 
p/p0 = 1. The ratio X/X, does not imply the number of layers present; if X, 
is the statistical monolayer, then X/X, is the statistical and not the actual 
number of layers. It is also inherent in the apphcation of this theory that the 
porous structure is a series of non-intersecting cylindrical pores. Such a for- 
malised structure is unlikely in the majority of cases, although it remains a 
useful approximation for comparison purposes. This has prompted the devel- 
opment of the so-called “modelless” method 1121 in which the hydraulic 
radius is estimated, and then an actual pore size distribution calculated upon 
the assignation of a geometrical structure to the pores. The pore size 
distribution method in practice lea& in th; &ority of cases to a distribu- 
tion of pore sizes around 3 single peak, or a bimodel distribution, but rarely 
more than this. The information usually quoted from these pore size distri- 
butions is usually the value of the radius at these peaks of distribution; less 
often, the volume contribution at these peak values is quoted. It is worth 
noting that information of this kind could be gained directly from the 
adsorption isotherm without reference to the complicated process of pore 
size distribution. This point will be raised in connection with heat-treated 
materials in other parts of this series. 

TYPE I ADSORPTION ISOTHERMS 

In this type of isotherm the amount adsorbed simply rises to a limiting 
value, usually at a low value of p/p,-, and then remains almost constant for 
the remainder of the adsorption isotherm_ In theory, it is associated with an 
adsorbed layer one layer thick, but in most physically adsorbed systems it is 
probably associated with a pore structure where the size of the pores is of 
the same magnitude as the adsorbate moIecule [ 131. In this respect it is 
probably best to adopt the notation of Dubinin [14], namely that the term 
micropores applies to pores with a diameter less than 20 A, mesopores with 
diameters in the range 20-300 A, and macropores with diameters larger than 
300 .& This type of adsorption isotherm, i.e. Type I, is often found with car- 
bons [7], and the correct interpretation of the adsorption data can be impor- 
tant in following the oxidation of carbon to gaseous products; there is a need 
to locate the surface where the oxidation process is taking place [ 151. An 
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alternative procedure in investigating structures of this type is to look at the 
adsorption capacity at a p/p0 value near to saturation for a series of different 
sized adsorbate molecules and interpreting this in terms of the pore size 
volume available to the differently sized molecules [ 131. 

CHEMISORPTION AND CATALYSIS 

One purpose of heat treatment of solids is to prepare catalysts. The actual 
activity of the catalyst varies with the heat treatment [ 161. Whereas physical 
adsorption is a process which gives a measure of the overall surface area of 
the solid, the catalytic process of, for example, cumene cracking on an 
aluminosilica catalyst can be used to relate this particular activity against the 
temperature of treatment of the alumino-silicate. Chemisorption of pyridine 
can be used in the same sense, in this case to determine the activity of the 
alumino-silicate in terms of acid sites against the heat treatment, and to com- 
pare this with the number of hydroxyl sites determined by thermogravi- 
metry. This forms the topic of work reported later in this series. This is 
simply one illustration of the way in which chemisorption and catalytic 
processes can be used to judge the activity of a heat-treated oxide and there 
are many more examples that can be drawn from this field. 

HEAT TREATMENT OF SOLIDS THAT SINTER WITHOUT DECOMPOSITION 

Materials receiving heat treatment without decomposition undergo a 
sintering process defined here as an increase in particle size with a decrease in 
surface area. By following the variation in surface area of, for esarnple, zinc 
oxide it can readily be shown that the sintering process is a function both of 
temperature and time [ 51. It can be seen from isothermal heating runs that 
the decrease in surface area occurs towards an equilibrium value determined 
by the initial physical condition of the oxide and the temperature of the 
experiment. The process of sintering is to cause a growth in particle size by a 
mechanism of diffusion. Assuming a constant rate of growth pen unit area 
under isothermal conditions, the sintering process is that of a contracting 
interface per unit mass of material, involving coalescence of adjacent particles 
with a decrease in their number. Provided the basic process of diffusion 
remains the same, the Arrhenius equation can be applied to calculate the 
activation energy associated with the process. Heating the oxide so that 
sintering occurs at different temperatures means that the possibility esists 
that the process of diffusion can alter, and the most obvious change is a 
change from surface to volume diffusion_ 

Three processes may be distinguished [ 171: 
(1) adhesion between particles leading to the formation of siezed joints at 

points of contact; 
(2) surface diffusion, in which coalescence of particles is accelerated by 

movement of chemical species along the surface; and 
(3) bulk diffusion, in which further coalescence is brought about by diffu- 

sion of chemical species through the bulk material. 
These phenomena occur in the above order as the temperature is 
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increased. Sufficient evidence exists to suggest that the various mechanisms 
become operative at defined temperatures often espressed as a fraction of 
the melting point ir. degrees Kelvin. Thus, if a = T/T,, where T, = melting 
point in degrees Kelvin, then surface diffusion occurs in the range a = 0.33 - 
0.45, whilst bulk diffusion is operative beyond a = 0.5, often called the Tam- 
man temperature_ Adhesion between joints is supposed to take place at 
much lower temperatures than those indicated above. As most organic com- 
pounds have melting points below 3OO”C, it can be seen that any decomposi- 
tion processes in organic materials are taking place in a temperature range 
where bulk diffusion is operative, and in fact many decompositions may be 
observed to take place either with liquefaction or partial liquefaction. It is 
this which reduces the adsorptive capacity of solid residues in most organic 
decompositions to values below the detection limits of the usual adsorption 
apparatus. It is therefore unusual to find adsorption esperiments used to 
gain information in the decomposition of the usual organic compounds. An 
exception is the degradation of some polymeric materials to carbons, where 
large adsorptive capacities may be observed as the amorphous carbon is 
formed with a progressively rising temperature of reaction. 

The simplest espression for the variation of surface area in the region 
where diffusion is to be expected [lS,19] is 

ds 
L = -k,(S, - Sf ) 
dt 

(7) 

for an isothermal esperiment, where S, is the surface area at any time t and 
Sp is the surface area at t = 00, when the rate has diminished to zero, and k, 
is a rate constant. Hence 

ln(S1 -S,) = -It, t + const. (3) 

It has been shown that an espression of this kind applies to the sintering of 
zinc oside [ 5 ] and in further parts of this series it will be shown that it also 
applies to other oside systems. Actually, most sintering data have been 
expressed in terms of the alteration of particle size or the increase in size of 
the junction between the particles. In order to compare observations on par- 
ticle size with those on surface area, the relationships D = 3/Sp can be used, 
where D = equivalent particle diameter, S = specific surface area and p = 

oxide density. In this way, plots of the variation of particle size may be con- 
structed from surface area observations and the data used to test sintering 
expressions put forward in terms of these properties. Thus the expression 
put forward by Lee and Paravano [20] when espressed in terms of surface 
area changes takes the form 

ln(S, - Sf) + ln(& + sf) (s,sI)2 = const. t + const. 

This has an estra term when compared with eqn. (8). The two are, hom- 
ever, compatible, for it can be shown experimentally [ 53 that 

lW% + Sf 1 
(S1Sf 1’ 

= const. ln(S, - Sf) (10) 



In the relatively few experimental systems where the temperature range 
spans both the regions where surface diffusion processes take place, it can 
be seen that each region is characterised by its own energy of activation 
1211. 

THE VARIATION OF SURFACE AREA IN GASIFICATION REACTIONS 

The situation is simplified here because for the gasification process 

_A + gas + gaseous products 

the surface area of the solid residue may represent the reaction int.erface. 
The traditional isothermal treatment may be considered. If 0: represents 

the fraction decomposed, and f the time, then for a zero-order reaction 

and 

(Y =kt+C 

so that plots of Q vs. t should be linear. 
If the reaction is first order 

da 
dt= h(1 -a) 

and 

log(1 -a) = kt + c 

then plots of log( 1 - Q) vs. t and values of da/dt( 1 
For second or higher orders 

da 
dt = k(l - tly 

where n 2 2, therefore 

t=-L 1 
Zz(n - 1) (1 - q-l 

+ const. 

(13) 

(14) 

a) should be constant. 

il5) 

and plots of t vs. l/(1 - a)“-’ should be linear. If the rate-controlling step is 
to be the chemical reaction between the solid and the gas at the surface 01 
the solid, then the above espressions must be related to the geometry of the 
interface to make sense. There are several simple models. 

Model 1 

Consider a system of n spherical impervious particles. On the assumption 
of a constant rate unit of surface area, then the weight loss W is given by 

W = pr@nJ -q7r<r - tX)3) (17) 
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where p = density of solid; F = original radius of particles; x = depth of sur- 
face gasefied per unit time; and t = time in sets (or whatever unit is conve- 
nient). 

This is usually expressed in terms of fraction decomposed when 

a= 
F3 - (F - t# 

F3 

= 1 _ (F - w 
rJ 

= $ (3r2 - 3tXF + t*X*) 

and 

(1 
F - tX 

- a)1/3 = - 

F 

which is usual “contracting sphere” law [4]. 
The expansion for da/dt is 

or 

112 

(20) 

(21) 

which could be used for identification purposes. However, the first-order test 
is that dol/dt(l - a) should be constant, but in this case is given by 

dar 3x 
dt(1 --a) = (F - tx) 

(22) 

Nevertheless, if terms in x2 or greater powers of x are ignored, then 

a=At (23) 

where A = :3x/r. 

Then 

dcu 
- -4 

dt- 
(24) 

and 

du A 

dt(1 -a)=(1 -At) 
(25) 

which satisfies the zero-order reaction. This approximation is only true when 
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I- >> tx, so that it appears either in the initial stages of the reaction or for 
very large spherical particles. Other shaped particles, i.e. cubic shapes, can 
be treated in a similar manner. 

Model 2 

Consider a system consisting of a single matrix with large pores running 
through it. The pores must be sufficiently large to present no diffusional 
problems. Let the initial radius of the pores be r and their total length L. 
Both these terms could probably be calculated from other data (e.g. the 
adsorption isotherm on the original material), then 

(II= 
(plT(r + t&L - p7rr’L) 

WO 

PTL = -. kc(2r + tx) 
Wo 

where W. = initial weight of sample. 

Writing A = pnLIWo 

(26) 

a = Atx(2r + tx) 

= 2Axr + Ax2t2 

Similarly, 

(27) 

dar 
- = 2Axr + 2Ax2t 
dt 

= 2Ax(r + xt) 

qnd 

da 2Ax(r + xt) 

dt(1 --) = 1 -AA(2r + xt) 

Some simplification can be achieved if R >> xt, when 

Ot=2AtXr 

(28) 

(29) 

(30) 

dcx 
dt=2Axr 

and 

da 24XP 
at<1 --) = 1 - 2Atxr 

(31) 

(32) 

This should hold when very large pores are present, or in initial stages of 
reaction. In any case, towards the end of the reaction the geometrical system 
upon which this is based would no longer hold; so in many cases plots of cy - 
t should be linear and da/dt should be constant. 
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Model 3 

An even simpler system is to assume that the surface area remains con- 
stant. There is evidence available that suggests that this is true in some sys- 
tems after about 5% burn-off; then 

Q = Sxtp (33) 

where S is the specific surface area 

do 
df=Sxp (34) 

and 

da sxp --- = 
dt(l -o) 1 -sxtp 

(35) 

Geometrical models can be fitted to this set of conditions, e.g. a material 
consisting of large flat plates where the principal reaction interface involved 
was the two flat faces of the plate. 

The interesting point arising from all these models is that although the 
corresponding form of the burn-off process can be seen in the analogous 
esperirnentel determinations of (Y = f(f) and da/dt or da/dt(l - Q) as a func- 
tion of time, the reaction interface invoIved is not necessarily the surface 
area determined from the adsorption isotherm. The kinetic data can be con- 
verted into reaction interface data using the Polanyi-II’igner expression [22] 
in the form 

_ $ = _,. v e--EIR7 

where No = number of molecules per cm’, v = frequency of vibration of 
atoms in the solid lattice c lOI see-‘; t- = distance between atoms in the 
solid lattice; 111 = atomic weight; p = density; N = Avogadro’s Number; and 
-dz/dt = number of molecules decomposing set-’ cm-‘. 

This would produce a value of x used in all the kinetic expressions and 
allow plots of the variation in reaction interface area to be plotted against 
the measured variation in specific surface area from adsorption experiments. 
This will be done in later papers in this series. 

THE VARIATION OF SURFACE AREA IN THE THERMAL DECOMPOSITIOI\! 
OXYSALT SYSTEMS 

The general reaction to be considered here is 

A(s) + B(s) + gaseous products 

Here A could be an osysalt such as a carbonate, and B a product 

OF 

oside, 
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whilst the gaseous product would be carbon dioside. Not all such decompo- 
sitions are so simple and the possibility of reaction with the atmosphere 
must always be examined [ 231. The situation is complicated by the fact that 
the reaction interface is not necessarily the surface area, as a layer of oside 
product is built up covering the reaction interface as the process of decom- 
position continues. Other complicating factors are the real consideration that 
must be given to diffusion problems as the product gas must diffuse away 
from the reaction interface through a layer of product oxide, and further 
complications are the change in volume, due to differences in density 
between osysalts and their corresponding oxides causing a distortion 
of the geometrical system, and finally a break-up of particles under 
the strain imposed upon them by this process [24]. This break-up of 
the particles means that the particle radius will diminish with an increase in 
the number of part.icles in the system, resulting in an observed increase in 
specific surface area as determined by adsorption. This is opposed by the 
sintering processes discussed earlier [ 171. There is thus an increase in surface 
area followed by a diminution_ The maximum surface area recorded 
coincides with the point where the strain cannot be contained within the 
original lattice structure, but it does not necessarily coincide with the 
completion of the chemical reaction. The treatment correlating the kinetics 
with this kind of change in the surface area has been set out in a general 
fashion [ 181 but may be cited here for a specific kinetic behaviour [ 191. 

Let the surface area due to the activation, S,, be proportional to the frac- 
tion decomposed, i.e. 

S, = k,a (3’7) 

Suppose in the decomposition the contracting sphere equation holds of t.he 
type 

1 - (1 - fI)‘;3 = Iz,t (3s) 

which rearranges to 

ar=l-(l--k.T)J 

then 

(39) 

s, = Iz,[l - (1 - k2t)3] 

= k,k:t(3 - 31z2t + k;tz) 

Differentiating 

ds 
2 = h,k2(3 - 61z2t + 3k;t’) 
dt 

= 3h,hl(l -kg)’ 

Let the sintering be described by 

dSs - __I< -- - 

dt 
4 

CJ 

(40) 

(11) 

(22) 
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(this is one of the simplest expressions, and the other more complicated 
equations may be used instead). 

The overall rate of change of surface area is then 

dS 
- = 3k,k2(1 -+~t)~ -k&3 
dt 

= A(1 -BBt)Z - cs (43) 

where A, I3 and C are substituted for the various functions of k to simplify 
the expression. Rearrangement gives 

$+CS=A(l-BBt)' (44) 

The corresponding expression after integration takes the form 

S=A’[E-FFt+Gf2] +const. (45) 

where A’, E, F and G are substituted for various functions of k to simplify 
the expression. 

In addition, the combination of density and surface area data provides an 
illustration of the effect of increase in the number of particles brought about 
by the activation process. If the original salt consists of n particles mole-’ 
with a molar volume and molar surface area of VI and S, then 

where MI = gram molecular weight; p, = density; and rl = the average radius 
of the particles. 

The molar surface area of the original unreacted material can be expressed 

by 

S, =s,Ml = 47rn,r: 

where s, = the experimental surface area in m2 g-‘. 

It therefore follows that 

3v, rl = - 
Sl 

and 

si ( ) 
112 

r, = 

4nn, 

(47) 

(43) 

In the decomposition process the oxysalt produces n2 particles mole-’ with 
a molar volume and molar surface area of V, and &, respectively. As before 

Mz 
V, =- =$7rn,r3 

P1 -- 

and 

(50) 

S2 = s,ns, = 4m,rf _ _ (51) 
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where M2 = the effective molecular weight of partially decomposed reacted 
material; S1 = the experimental surface area in m’ g-l; p2 = density; and r2 = 
average radius of the particles. 

Again, it follows that 

3V2 r2 = - 
SZ 

(52) 

and 
111 

r2 = 

The ratio of these two radii is given by 

rl VI& _ = -.._- 
rl V2S1 

or 

r’= 
r2 
and 

(53) 

(54) 

(55) 

(56) 

If the number of particles remains the same 

(57) 

but the thermal data shows this latter result is rarely found and more often 
n2 > n,. 

If the molecular weight of the original reactant material is designated as 
dl, and of the final product as M3, then the “effective” molecular weight of 
the partially reacted material M2 can be estimated by use of the relationship 

ill, = (1 --a) 1’11, + cLMj (53) 

where Q = fraction decomposed. Thus the molar surface area of the partially 
reacted material is given by 

s2 = s2 ((1 - a) 111, + a&} (59) 

This allows the variation of the ratio of particles (n2/rz ,) to be followed 
during the course of either an isothermal decomposition or a TG esperirnent. 

CONCLUSION 

It can be seen that in the course of a decomposition, the nature of the 
adsorption isotherm may be altered either by a change in the porous struc- 
ture or by an alteration in the value of C in the description of the analysis by 
the BET equation_ The values of the mean pore radius, the total pore volume 
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and, in particular, the estimate of the specific surface area can be used to 
explain the processes of thermal decomposition. This can be used to follow 
the mechanism of sintering, the gasification reactions of the type A(s) + 
gas + gaseous products and decompositions of oxysalts of the type A(s) + 
B(s) + gaseous products. 
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