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ABSTRACT 

Kissinger’s “Shape Indes” (SI) method, previously applied to determine the kinetic 
order of thermal decompositions of solids studied by DTA or DTG, has been assessed in 
connection with its USC in TPD-kinetic analysis. Results indicate that the “shape indes” 
of a TPD-peak depends on SHIRT and T=ITI (i-e., the cnthalpy of adsorption or the 
energy of activation for desorption, and the ratio between the inflection point tempera- 
tures), while when readsorption of the desorbed species Lakes place. dependence on the 
initial coverage, 00, is also observed. The method has been applied to determine the 
kinetic order of a “theoretical” TPD-peak previously built up leading to correct values of 
that parameter. The possible use of this method in the study of dcsorption processes by 
TPD is discussed. 

INTRODUCTION 

Thermal decomposition reactions of solids following the general law 
da 

have been examined by Kissinger [ 11, who has formulated a method of 
study which allows the determination of the values of n by measuring the 
“shape index”, S, of curves obtained by differential thermal analysis (DTA) 
or derivatographic thermogravimetry (DTG). According to this author, a 
relationship exists between both parameters in the form 

11 = 1.26 S’ ‘= (2) 
assuming that the ratio TI/T-, between the temperatures at the inflection 
points of the curVes remains almost constant close to 1.08. Lately, the 
method has been successfully [2] extended to the study of solid decompo- 
sitions fitting kinetics different from those stated by eqn. (1). 

In a recent paper, Konvalinka and Scholten [3] have applied Kissinger’s 
c&era to TPD-diagrams of hydrogen weakly adsorbed on the surface of pal- 
ladium to examine the desorption kinetics of this species. The conclusions 
obtained by this procedure have been criticized by some [4] on the basis of 
the difference in the kinetic equations developed in the TPD-method with 
regard to those used for performing the kinetic analysis of the thermal 
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decomposition of solids. In particular, there is no reason, a priori, for assum- 
ing that, for instance, both DTA-diagrams of a first-order decomposition of a 
solid and TPD-curves of a first-order desorption processes with freely occur- 
ring readsorption would have the same “shape indexes” as Konvalinka and 
Scholten [3] have assumed. 

The scope of the present work was to explore in more detail the possibili- 
ties of “shape indexes” of TPD-curves of first- and second-order desorption 
processes (with and without freely occurring readsorption) to analyse kinetic 
order according to Kissinger’s “SI-method” in order to determine the actual 
kinetics of desorption of gases from solid surfaces. 

THEORETICAL 

Desorption of gases previously adsorbed on solid surfaces fits the general 
law 

dO --= dt A--e -AH/Hr _ f(O) 

or 

de A* _-=-. 
dT P 

e-M/RT _ f(O) 

(3) 

(4) 

where 0 represents the surface coverage; fi is the heating rate; -4’ is the pre- 
esponential factor of Arrhenius if the desorption takes place without read- 
sorption, and stands for esp(4S/R), 4s being the adsorption entropy when 
there is readsorption of the desorbed gases; 4H is the heat of adsorption or 
the activation energy (i.e., Ed) of desorption, depending on whether the 
desorption process occurs with or without readsorption, respectively; f(O) is 
a function depending on the reaction kinetics. Algebraic espressions for f(0) 
are given in Table 1 for different desorption kinetics together with their first 
and second derivatives, f’(0) and f”(0). 

-According to Kissinger [l], the “shape indes” is defined as the absolute 
value o,! the ratio of the slopes of the tangents to the TPD-curve at the inflec- 
tion poihts, and can be espressed analytically as 

(d2Wt2h =a 
(d’O/dt’)2 b 

where subscripts 1 and 2 refer to the values of d%/dt’ at the first and second 

(5) 

inflection points, respectively (i.e., where d30/df3 = 0). The meaning of a and 
b is illustrated in Fig. 1 for the “theoretical” TPD-curve deduced in a previ- 
ous paper [5]. 

Differentiating eqn. (3), substituting our own eqn. (3) and collecting 
terms, we obtain 

(6) 

Integrating eqn. (3) between the initial coverage, fJO, and 8, and taking 
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Fig. 1. “Theoretical” TPD-curve from ref. 5, showing the graphical method of calculating 
the “shape indes” S = a/b: a = 35 EC; b = 55 K; T1 = 512 K; T2 = 555 K; TX1 = 535 IL 

into account the espression for the integral of the Arrhenius equation [4] )I 
we may write 

ART’ -. g(0) = pi h(e) . emAHIRT 

h(e) being a function given by the espression 

h(e) = 1 - ; + s- . . . + (-1)“(12 + l)! 
En 

(‘7) 

where E = NWRT. Expressions for g( 0) for the different kinetics have been 
included in Table 1. 

From eqns. (3) and (7) we obtain 

dO -= PM 1 --_-_ 
dt RF h(e) f(0) - de) (9) 

Setting the first derivative of eqn. (6) equal to zero, substituting in eqn. (6) 
and taking into account the value of dO/dt given by eqn. (9), we may obtain 
the condition that must be fulfilled by 8 at the inflection points, after 
rearrangement in the form 

glei)’ 
- 
h(e)’ C 

f”(Oi) - f(Oi) + f’(e,)l 1 3 - - - f’(ei) - g(Oi) 
h(c) 

+(l-Z)=O (10) 
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Equations obtained for each of the desorption kinetics quoted in Table 1 
after substituting the corresponding functions f(e), f’(e), f”(e), and g(8) in 
eqn. (10) and collecting terms, are summarized in Table 2. In the case of 
desorptions without freely occurring readsorption, the solution for Oi can be 
easily obtained; however, in the other cases the solutions must be calculated 
using a computer program. 

From eqns. (5), (6), and (9), the “shape indes” of the TPD-curve can be 
espressed in the form 

s _ f(el)g(el)C(lih(E)f’(el)g(el) -11 -I f(e,)g(e,)[(lih(E)f’(e2)g(e:!) - 11 
I. (Tz)4=sl. (2) (11) 

where 0 1 and f3? refer to the solutions of eqn. (10) at. the first and second 
inflection points, respectively. 

Table 3 gives the espressions of S, for each of the desorption kinetics 
included in Table 1. We can see that the espression for “shape indes” of a 
TPD-curve following kinetics 1M7 and 21%’ depends only on the values of both 
4H/RT and T2/T1, while in the case of desorptions with freely occurring 
readsorption, S1 is also strongly dependent upon the initial coverage, O,,. This 
is clearly shown in Table 4, which includes the values of S, calculated for the 
different desorption kinetics, as a function of both 4H/RT and OO. We can 
see that at high coverages the values of S, are different enough to allow the 
unambiguous determination of the desorption kinetics. However, if decreas- 
ing coverages are used, data in Table 4 indicate that the “shape indes” of 
TPD-curves of the kinetics with freely occurring readsorption would 
approach values corresponding to those without readsorption. Thus, at low 
coverages it would be rather difficult to differentiate between processes with 
and without readsorption although it is always possible to decide between 
the kinetics of first and second order. The analysis of the variation of S, 
with 8,, seems, therefore, of interest to indicate whether readsorption is 
taking place during the TPD-scanning process. 

RESULTS AND DISCUSSION 

In order to check the application of the methods of kinetic analysis, the 
TPD-curve shown in Fig. 1 was calculated by the procedure described else- 
where [ 51, assuming a heating rate of 20” C min-‘, an initial coverage 0, = 1, 
and the following kinetic parameters: E, = 24 kcal mole-’ and A = lo* set-‘. 
A first-order desorption without readsorption was assumed. The value of 
S1 = 0.43 obtained from Fig. 1 is in very good agreement with the expected 
one of 0.435 as calculated from the assumed first-order desorption without 
freely occurring readsorption by interpolating in Table 4, after taking into 
account E/RT = 23. 

On the other hand, we have analyzed the shape indexes of TPD-curves of 

desorption of benzene from the zeolites NaY and NiCaY obtained by Khar- 
lamov et al. [6], and reproduced in Fig. 2. These authors have concluded, by 
using conventional methods of kinetic analysis, that a first-order desorption 
without freely occurring readsorption takes place on both samples. The acti- 
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Fig. 2. TPD-curves for desorption of benzene from NaY (1) and NiCaY (3) zeolites, 
according to Kharlamov et al. [6]. 

vation energies reported [ 61 were 12.5 and 21 kcal mole-’ on the NaY and 
NiCaY specimens, respectively. 

The values of S, calculated from the TPD-curves in Fig. 2 for the desxp- 
t.ion of benzene from NaY and NiCaY were 0.34 and 0.36, in very good 

agreement with those calculated (0.37 and 0.39, respectively) by interpolat- 
ing the data in Table 4 after taking into account the corresponding values of 
AHIRT. 

In summary, we may conclude that the analysis of the “shape indes” of 

single TPD-curves of desorption processes from solid surfaces might. 
represent, if properly used, an easy and quick procedure for determining 
kinetics of desorption, although a detailed study may be required to esamine 
the influence of the initial coverage on the “shape index” to definitively 
decide if the reaction takes place with or without readsorption. 
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