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ABSTRACT 

Thermodynamic characterization of the water+methanol system, at 298.15 K, has been 
achieved through study of the composition dependence of excess differential coefficients, 
related to the pVT dependence of free energies and free enthalpies. For this purpose, density, 
heat capacity per unit volume of solution, and ultrasonic velocity were measured over the 
whole composition range. Results suggest that weak hydrophobic effects might develop in the 
water-rich region; then, the organic moiecules are incorporated into the aqueous network by a 
substitutional association. 

INTRODUCTION 

The aim of the present work is to study the composition dependence in 
the water + methanol system, at 298.15 K, of ‘differential coefficients’. 
These are the~odyna~c properties related to the temperature or pressure 
dependence of some of the generalized extensive quantities, which seem able 
to give a thermodynamic characterization of the system under consideration. 

For this purpose, measurements of density, heat capacity per unit volume 
of solution, and ultrasonic velocity were performed over the entire composi- 
tion range, at 298.15 K. 

The changes of these properties with changing concentration are studied 
through their deviations from the behaviour of an ideal solution model, 
defined within the concept of the widely accepted generalization of Raoult’s 
law. 

Finally, a special emphasis is placed on rigorous methods for the calcula- 
tion of ideal and excess ultrasonic velocity in this model system. 

~40-6031/89/$03.50 0 1989 Elsevier Science Publishers B.V. 
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THEORY 

The aim of this work is to present a method for the thermodynamic 
characterization of binary liquid mixtures which is an extension of the basic 
set of quantities HE, pVE and TSE. In a previous work [l], we classified 
thermodynamic quantities into three main categories: generalized extensive 
quantities, generalized specific quantities, and derived quantities or differen- 
tial coefficients. A differential coefficient is defined by an equation which is, 
or which contains, a partial derivative. In the present work we have 
considered the following differential coefficients, which are pVT-dependent 
quantities of the thermodynamic extensive quantities G and F 

isobaric and isochoric molar heat capacity, C, 
isothermal and isentropic compressibilities, K~ and K, 
isobaric and isentropic expansibilities, ax and A, 
isentropic and isochoric pressure coefficient, pX 

These are listed in Table 1, together with their definitions and mutual 
relationships; they are also expressed in terms of the experimental properties 
which must be known in order to generate the complete set: the density p, 
the isobaric heat capacity per unit volume of solution u, and the ultrasonic 
velocity u of the binary system under consideration. The differential coeffi- 
cients are expressed as functions of u and three derived quantities of p and 
u: the molar volume U, and the two differential coefficients (Ye (the isobaric 
coefficient of thermal expansion) and C’ (the isobaric molar heat capacity). 

A common approach to describing the composition dependence of ther- 
modynamic properties is to express these quantities as excess functions, i.e. 
deviations from the behaviour of an ideal mixture. From a thermodynamic 
point of view, a mixture is said to be ideal when it obeys a generalized form 
of Raoult’s law in which the original statement in terms of vapour pressure 
is replaced by one in terms of fugacitiej, as emphasized by Bertrand and 
Treiner [2]. The excess quantity zE relative to the thermodynamic variable z 
is given by the general equation 

Z 
E =Z-zid 

representing the difference between observed and ideal quantities. As has 
been shown by DouhCret et al. [l], zid may be written in the shortened form: 

Except for the case of the pressure coefficients &, & is either xi or #‘, 
depending on whether z is a molar property or not. xi and $’ are, 
respectively, the mole fraction of component i of the system, and its volume 
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TABLE 1 

Some thermodynamic differential coefficients: definitions, p VT dependence, mutual relation- 
ships and methods of calculation 

Variable Definition and p VT dependence Other Calculation from 
relationships experiment 

cp 

Ps 

Kr 

KT 

C” 

as 

AS 

P” 

KS 

KS 

av 

(-1 aT P 

1 av 

--(-I v ap r 

au 

i-1 aT v 

av 

i-1 aT s 

i av 

--(-I v ap s 

a2G i-1 apaT 

a2G 

-i-I aP2 

v 

- 

a2F 

-i-I avaT 

- To(Y~~~ 

C, -__ 
TL$ L, 

CV 

TPv 

cv 

Tvcu, 

CV 

TV&P v 

CV 

T&P v 

Calculated from p 
and CJ 

Calculated from p 
determined at different 
temperatures 

CP 

TLI (Y,, 

[ 
C, + TPv(cY~)~u~] 

PCpU2 

I 
UC, + TP( LU~)~U~ 

PCpU2 

1 _ 

(cp)2 
[ Cp + TPV(~~)~U~] 

[ Cp + TPV(~,)~U~] 
1 

PM2 

0 

PU2 

fraction, stated in terms of the unmixed components at the temperature and 
pressure under consideration. For &, it has been shown that 

(3) 

where the superscript + refers to the pure component i. For by and &, the 
isochoric and isentropic pressure coefficients, z is respectively equal to K,, 
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the molar isothermal compressibility, and A,, the molar isobaric expansibil- 
ity. 

fi@, is a ‘multiplying term’ [l]. It is equal to 1, over the whole concentra- 
tion range, for pressure coefficients, isobaric molar heat capacity, isobaric 
expansibilities and isothermal compressibilities. Otherwise, it is a function of 

(Uid and of some properties of the pure component of the system. 
Consequently, it is dependent on the composition of the system under 
consideration, and differs from 1: the corresponding ideal mixing laws are 
no longer linear in terms of &. 

It may happen that pseudo-excess quantities zny@) are needed. These 
represent the difference between the observed quantities and the additive 
quantities zad(*), and are calculated from the equation 

ZnE(+) = z _ zad(@) 
(4) 

where zad(*) is calculated by averaging over the weighting coefficient $I, i.e. 

EXPERIMENTAL 

Experimental techniques 

Densities of solutions 

These were measured using a flow type oscillating tube densimeter Sodev 
model 02D, thermostatted to within kO.002 K with a Setaram temperature 
controller. The temperature was checked using a calibrated quartz ther- 
mometer Hewlett-Packard model 2801 A. A linear relationship was as- 
sumed between the density p of the liquid under consideration and the 
square of the oscillator period rp 

p = A + B7p2 (6) 

Measurements of r,, were performed using a timer-counter Hewlett- 
Packard model 5308 A, and recorded using a thermal printer Hewlett- 
Packard model 5150 A. 

The solutions were passed through the densimeter by gravity. Each 
sample measurement was bracketed by two water measurements, water 
serving as a reference fluid to determine the density of the samples. No 
significant drift of rp vs. time was observed, after the thermal equilibrium 
was reached (within 15 min); values of ( rp) w also exhibited a fairly good 
constancy throughout. The density of water p, was calculated by means of 
the equation proposed by Kell [3], and found to be equal to 997.048 kg rnp3 
at 298.15 K. Water and air at very low pressure were used as standards to fix 
the values of the calibration constant K,. No significant change of K, 
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occurred during a period of several months. In such conditions, differences 
between the densities of the sample and of the reference fluid ( p - p,) can 
be determined with a reproducibility of 5.10p3 kg rnp3. 

Isobaric heat capacities per unit volume of solutions 

These were determined using a Picker flow calorimeter equipped with 
gold cells, manufactured by Setaram. The calorimeter was thermostatted to 
within 0.001 K. The temperature was measured using a calibrated quartz 
thermometer Hewlett-Packard model 2801 A. Heat capacities per unit 
volume of solution u were measured according to a step-wise procedure. The 
liquids were sucked up through the calorimeter by means of a peristaltic 
pump, using a separator as an interface between the calorimetric unit and 
the pumping system. For all measurements a temperature increment of 
approximately 1.2 K, centered on 298.15 K, was used. The overall precision 
of the measurements of u is 70 J K-’ rne3. 

Ultrasonic velocity of solutions 
These measurements were performed with a Mapco sonic solution moni- 

tor model 6105, using the “sing-around” method. The electronic processing 
circuit was coupled to a solution cell designed by McKent (Bergen, Norway). 
The room temperature was kept constant at 298 f 1 K throughout the 
measurements, since Tamura et al. [4] have argued that the electronic delay 
time of answer r of the sing-around process depends on the surrounding 
temperature, in relation to the difference between the temperature of the 
sing-around circuit and that of the bath. The ultrasonic pulse repetition rate 
(frequency) was determined by a frequency counter Hewlett-Packard model 
82905 B. 

The cell was submerged in a thermostated water-bath, the temperature of 
which was monitored using a quartz thermometer Hewlett-Packard Model 
2804 A. This was estimated to be accurate to within 0.01 K, with a long term 
stability of +0.002 K. All the measurements were carried out at 298.15 K. 
No more than 10 cm3 were needed to fill the cell, so the thermal equilibrium 
was reached quickly. Measurements of the frequency f were performed 20 
min after the cell was dipped into the water-bath, and repeated 10 min later. 
No significant drift of f in terms of time t was observed. Each sample 
measurement was bracketed by two water measurements, since here again 
water served as a reference fluid, this time to determine the ultrasonic 
velocity of the samples. The speed of sound u is related to the measured 
frequency f by the general equation 

,f(1+ CC) 

u= (n-Tf) (7) 

where n is a parameter whose value is dependent on the ultrasonic genera- 
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TABLE 2 

Coefficients relative to the experimental uncertainty on values of frequency and temperature 

.? l&f1 16Tl 
9:, -) 

UT 

(7, s K-l) 

br 4 

(s-l) W) W’) W-‘) 

(I, m s-l) (1, m K-‘) 

r(s) 0.5 - 4.6 E-7 - 4.4E-1 - 
- l.OE-3 - 1.1 E-4 - 1.1 E+2 

r(m) 0.5 - 1.4E-3 - 1.7E-2 - 
- l.OE-3 - 1.6 E-l 2.1 

tor, I is the path length, and CY is the coefficient of thermal expansion of the 
material of the probe. Use of the Mapco apparatus implies n = 7. 

Calibration of the cell was carried out by measuring the frequency of 
water samples at two temperatures T1 and T2, symmetrical in relation to 
298.15 K. The calibration was based on the absolute values of the velocity 
for pure water reported by Del Gross0 and Mader [5]. The absolute and 
relative errors on z, standing successively for 7 and 1, are given by the 
following equations 

VW = [~~l~~~+~~l~Tl]/AT (8) 

WI and ISTI P re resent the absolute values of the uncertainty on the 
experimental values of f and T, respectively. AT symbolizes the difference 
( T2 - T,) between the temperatures T1 and T2 considered for the calibration. 
The coefficients af, aT, br and bT have been collected together in Table 2. 
It has been observed that rather small values of 1 Sf 1 and 1 ST 1 give rise to 
larger changes of 7 and t with decreasing AT. 

The accuracy relative to the speed of sound in a sample x, for which water 
served as a reference fluid r, has been calculated for the difference of the 
respective velocities in x and r, r*xA~ 

Figure 1 shows the changes in the magnitude of the absolute error, ( Su, 1, as 
in 

r*xA~ = [‘% f I?Iu, I] (W 

These have been plotted vs. [““Af] for several possible values of [? zt I ST I]. 

The difference curves clearly demonstrate that I8tt, I cannot be assumed to 
be constant over the entire concentration range of a given binary system. 
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Fig. 1. Changes in 1 Su, 1 as a function of the difference between the frequencies f, and f,, 
measured respectively for the sample x and water serving as reference fluid r, with: AT = 2 
K; T, = 298.15 K; Af = [frcT2) - frtr,,] = 461 s-l; fNT,, =131854 s-‘; Y= =1.05 E-6 s. 
a, 7 = 7, +0.15 E-6 s; b, T = 7, +O.lO E-6 S; c, r = Fc +0.20 E-6 S. 

Materials 

Water was first deionized by means of ion-exchange resins, then distilled. 
Its conductivity was always less than 1.0 X 10e6 ii!-' cm-‘. The methanol 
used was a Prolabo RP Normapur guaranteed reagent, used as received. The 
manufacturer estimate of purity for the methanol was greater than 99.8 mass 
%. The main impurity was water, whose content was ca. 0.2 mass 5%. The 
methanol was stored, protected as far as possible from atmospheric moisture 
and CO,. 

Preparation of solutions 

All solutions were prepared by weight with, a precision of 0.1 mg from 
thoroughly degassed samples of deionized and distilled water and of 
methanol; then corrected for buoyancy. A correction for the water content 
of the methanol was included in the calculation of the mole fraction. The 
mole fraction values are therefore reliable to within 1 x 10p4. 

RESULTS AND DISCUSSION 

Experimental results 

The density, isobaric heat capacity per unit volume of solution, and 
ultrasonic velocity of the water (1) + methanol (2) mixtures were measured 
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TABLE 3 

Density, heat capacity per unit volume and ultrasonic velocity in water + methanol mixtures, 
at 298.15 K 

x2 x2 

0 0.997048 
0.0151 0.99220 
0.0200 
0.0304 
0.0339 0.98658 
0.0499 
0.0700 0.97711 
0.0804 
0.1003 
0.1105 0.96743 
0.1507 0.95827 
0.1513 
0.1822 
0.1851 0.95065 
0.1999 
0.2313 
0.2327 0.94005 
0.2517 
0.2707 0.93156 
0.2749 0.93064 
0.3008 
0.3216 0.92017 
0.3497 
0.3796 0.90724 

4.1670 

4.1606 
4.1567 

4.1395 

4.0972 
4.0609 

3.9304 
3.8388 

3.7808 
3.6840 

3.6125 

3.4631 

3.3166 

1496.687 
1507.00 

1520.07 

1543.32 

1561.48 
1569.52 

1568.14 

1554.58 

1537.34 

1511.54 

1475.23 

0.4018 
0.4304 0.89620 
0.4486 
0.4771 0.88595 
0.4916 
0.5291 0.87503 
0.5501 
0.5793 0.86455 
0.6005 0.86020 
0.6011 
0.6485 0.85056 
0.6496 
0.7021 
0.7114 0.83821 
0.7688 0.82725 
0.8002 
0.8151 
0.8498 
0.8697 
0.9004 0.80326 
0.9424 
0.9582 0.79331 
0.9982 0.78663 
1 0.78635 

3.1593 

3.0344 

2.9344 

2.7898 

2.6876 

2.5848 
2.4787 

2.2999 

2.2194 
2.1891 

2.0774 

1.9930 

1441.31 

1409.98 

1374.57 

1342.14 
1328.58 

1297.71 

1258.51 
1223.64 

1195.83 

1148.59 

1118.43 
1098.28 
1097.48 

over the whole composition range, at 298.15 K. The number of experimental 
points was chosen to give an adequate point density, allowing a precise 
numerical treatment of the data; the mixtures were also chosen so as to fill 
the gaps observed in previously published data sets in the range of composi- 
tion 0.5 < x2 < 1 [6-121. The properties of pure methanol were obtained by 
extrapolating to unit mole or volume fraction, x2 and &, respectively, by 
means of a simple polynomial expansion. The relevant results are presented 
in Table 3. 

In view of further numerical treatment of the data sets, the values of the 
molar volume u, and those of the isobaric molar heat capacity C, were 
calculated from the values of the density p, and the isobaric heat capacity 
per unit volume of solution (I, respectively. 

The molar volume u is easily derived from the density p, using the 
following equation 

“2c c *xiM, 
P ;=I P 

(12) 

where M, denotes the molar mass of the component i. 
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As for u, this is converted in a first step to the specific heat cP, by means 

of the relationship 

03) 

Then the isobaric molar heat capacity CP is obtained from the equation 

c,= ; [x,M,]c, (14) 
i=l 

The respective values of cP and CP for water were taken to be 4.1793 J K-’ 
g-r and 75.292 J K-’ mol-‘, after Kell [3]. 

Numerical treatment 

The following excess and non-excess quantities were calculated using 
experimental values 

2 

UE = 
=. ( 

1 1 
x,M, - - + 

i=l p P, i 

cp” = ; X,vfi 3 - $ 
i=l i 1 I 

05) 

(16) 

(17) 

Curve-fitting procedures are needed in order to estimate the level of 
internal consistency of our data sets, and to compare this level with those of 
corresponding data sets taken from the literature [6-121. Here we would 
emphasize the distinction between curve-fitting techniques designed solely to 
provide an algebraic summary of a specific set, together with an estimate of 
the level of internal consistency, by means of the value of the standard 
deviation a,; and those which provide the same kind of information, but are 
parameterized in such a way as to attempt to interpret the data in the 
context of a model. 

The subsequent equation is one of the former techniques. Redlich and 
Kister [13] have introduced a simple and empirical representation for the 
excess properties, which can be extended to multicomponent systems. For a 
binary system, a simplified form of their equation is: 

Z E=+1+2ta,(1-2+2)i 
i=o 

08) 

The +i elements represent the weighting coefficients relative to components 
1 and 2 of the system. The number of coefficients a, which are needed to 
describe the experimental results depends on the number of points available, 
on their density throughout the whole concentration range, on their quality, 
and on the molecular complexity of the system. 
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TABLE 4 

Standard deviations of the Redlich-Kister and the four-segment model analyses of the excess 
molar volumes [9] and excess isobaric molar heat capacities [7] of the water+ methanol 
system, at 298.15 K 

Z 
E Weighting Number of parameters 

coefficients 5 6 7 

1061JE Redlich-Kister [13] x2 0.0019 0.0007 0.0006 
(m3 mol-‘) +; 0.0007 0.0007 0.0007 

Davis [15] x2 - 0.0009 

c,” Redlich-Kister [13] x2 0.067 0.059 0.048 
(J K-’ mol-‘) +; 0.052 0.047 0.047 

Davis [ 151 x2 - - 0.045 

The model recently devised by Davis [14] for the analysis of excess 
property data for aqueous binary systems is one of the latter techniques. It 
embodies the concept of the segmentation of the total composition range 
into four distinct regions; the values of the mole fractions at the three 
segment junctions are determined in order to obtain the best overall optimi- 
zation. Seven parameters are needed in this treatment, which deals primarily 
with molar quantities. Some excess properties of the water + methanol 
system, taken from the literature, including the excess molar volume uE [7], 
and the excess isobaric molar heat capacity CPE [9], have been analysed 
previously by Davis [15], using the four-segment model. A comparison of the 
accuracy of the two curve-fitting procedures suggested that we should 
analyse these data sets using the Redlich-Kister eqn. (18). The values of the 
standard deviations (I, obtained using these two different approaches are 
reported in Table 4. Taking into account the respective symmetry and 
dissymmetry of the plots of vE and Cf against x2, the Redlich-Kister 
analysis appears to require, at equal values of a,, an equal or smaller number 
of coefficients than the four-segment model, for the system considered. Also, 
the Redlich-Kister procedure allows us to analyse the excess quantities vs. 
different weighting coefficients; those giving rise to the more symmetrical 
plots require a lower number of coefficients and, for a given data set, a lower 
value of (J, is obtained. Owing to this versatility, the Redlich-Kister eqn. 
(18) was preferred to the four-segment model. However, we are aware of the 
vast superiority of the model devised by Davis [14] for the great majority of 
binary aqueous systems, especially for those where strong hydrophobic 
effects are observed in the water-rich region. We are also convinced that, 
even in its first form of development, a modest degree of physical signifi- 
cance may be attributed to some of the parameters of this model. This is not 
the case for the coefficients of the Redlich-Kister eqn. (18), which have no 
interpretive use. 
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Comparison with published data 
It seemed useful to define clearly the conditions under which the best 

overall fit of the excess quantities previously defined in eqns. (15-17) may 
be obtained. Therefore, Up was determined for uE, CPE and unWx~) from the 
Redlich-Kister analysis of our results and other data sets taken from the 
literature [6-121. Two different weighting coefficients, xi and #‘, were used 
successively in eqn. (18), while n, the number of ai coefficients, was allowed 
to vary. The values of the standard deviations u,(, ) and CQ+>) for n = 6-8 
are summarized in Table 5. It is clear that, for a given data' set, values of 
u T(X,j are weakly dependent on q$ and n, for both vE and CPE; on the other 
hand, the best overall fit of u”~~J) is obtained with +y. 

Values of the a, coefficients from the Redlich-tister analysis of uE and 
CPE against xi and of ~“~~1) against $7 are reported in Table 6, along with 
Us for the two first excess quantities and u,~+;:, for unWxj); N is the 
number of experimental points. It should be emphasized that n has been 
taken to be equal to 6, in order to preclude overparameterization which 
might provide meaningless coefficients. The level of the internal consistency 
of our results appears to be in reasonable agreement with that of most of the 
previously published data sets. 

The following graphical method for comparing the levels of internal 
consistency of various data sets is undoubtedly more illustrative. The 

TABLE 5 

Values of standard deviation as a function of the weighting coefficient & and of the number 
of parameters n of the Redlich-Kister eqn. (18) for some excess and pseudo-excess 
properties of the water+methanol system, at 298.15 K 

Property 

106UE 
(m3 mol-‘) 

c,” 
(J K-t mol-‘) 

uflE(x,) 

(m s-r) 

Ref. 

This 
work 

6 
7 

This 

work 
8 
9 

10 

This 

work 
11 
12 

%,) c% +: ) 

n n 

6 7 8 6 7 8 

0.0012 0.0011 0.0011’ 0.0013 0.0011 0.0012 
0.0055 0.0047 0.0045 0.0050 0.0053 0.0054 
0.0007 0.0006 0.0007 0.0007 0.0007 0.0007 

0.08 0.09 0.09 0.09 0.09 0.09 
0.10 0.09 0.10 0.09 0.09 0.10 
0.06 0.05 0.05 0.05 0.05 0.05 
0.05 0.03 0.01 0.02 0.02 0.01 

0.77 0.44 0.35 0.35 0.36 0.36 
0.67 0.19 0.18 0.23 0.19 0.20 
0.59 0.30 0.29 0.23 0.21 0.21 
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Fig. 2-a. Differences AuE (calculated from eqn. (19)) for the water (l)+methanol (2) system, 
at 298.15 K, as a function of the mole fraction of methanol x2. o, Our results; l , Benson and 
Kiyohara (1980); * Grolier et al. (1978); - - -, +0.25’S deviation. 

Fig. 2-b. Differences AC; (calculated from eqn. (19)) for the water (1) + methanol (2) system, 
at 298.15 K, as a function of the mole fraction of methanol x2. o, Our results; l , Benson et 
al. (1980); Q, Grolier et al. (1978); *, Ogawa and Murakami (1986); - - -, +0.25% 
deviation. 
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Fig. 2-c. Differences Au”~~I) (calculated from eqn. (19)) for the water (1) +methanol (2) 
system, at 298.15 K, as a function of the ideal volume fraction of methanol &. o, Our 
results; 0, Benson et al. (1981); A, Lara and Desnoyers (1981); - - -, +0.25% deviation. 

method consists in drawing a deviation plot of zE or z”~@J) against &. 
Figures 2-a-c show the deviation plots of AuE and AC: against x2 (Figs. 
2-a and 2-b, respectively), and that of ~~~~~~ against & (Fig. 2-c). AzE, 
where zE holds for uE, CPE and zPUxf) is equal to 

Az(“)E = z;b;” _ Z(nF 
talc (this work) (19) 

~$2” represents the non-smoothed values of zE, as defined in eqns. (15-17); 
z:$Fthis workj represents the smoothed values obtained in the present work by 
means of eqn. (18). AZ E is calculated first with z,Eb, as obtained in the 
present work, and then with the various data sets taken from the literature. 
Figure 2-a shows clearly that our results are in good agreement with those of 
Benson and Kiyohara [7]. The results obtained for ACPE are more scattered; 
some of them even exhibit positive or negative drifts, particularly in the 
methanol-rich region, as shown in Fig. 2-b. A better consistency is observed 
for AzPWxs); except for a few extra points, no systematic drift is observed in 
Fig. 2-c. 

Differential coefficients 

Isobaric coefficient of thermal expansion 
aP was derived from precise values of the excess molar volume uE 

computed from density measurements performed at 15-35” C by Benson 
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and Kiyohara [7] by two separate methods, since these authors did not 
publish explicit values of (Ye. On first attempts at using their method we 
could not reproduce the smoothed values of uE and got only approximate 
values of (Ye. Finally, sound values were obtained after a misprint was 
deleted from the smoothing equation, a modified form of the Redlich-Kis- 
ter eqn. (18). This expression should be written in the following form 

uE=+&$ [a;t+a,,(t-25)](1-2cp’,)‘-’ (20) 
i=l 

where t is the temperature in degrees Celsius, and a,, and a,, are the 
coefficients of the polynomial expansion. The values of (Ye were converted to 
A,, according to the equation given in Table 1. 

We also decided to use a separate method proposed by Davis [16], where 
a modified cubic splines procedure is used to interpolate the same values of 
uE at rounded mole fraction. Assuming uE to be a quadratic function of 

(t - 2% $j (temperature smoothed) and (L3uE/aT), were calculated. These 
quantities are readily convertible to u and (av/aT),, i.e. A,. Deriving (Ye 
from these results is straightforward. 

The values of A, were found to be in excellent agreement with those 
obtained according to the method used by Benson and Kiyohara [7]. It is 
clear that the Redlich-Kister eqns. (18) and (20) are purely empirical, but 
one should also be aware that the cubic splines procedures have some 
limitations. However, the fact that these two methods give very similar 
results is a supplementary argument for their being reasonably accurate. 

The a, coefficients of the smoothing equation for AZ, the excess molar 
expansibility, are collected in Table 7. 

Other differential coefficients 
The values of the other differential coefficients listed in Table 1 are 

readily obtained according to the equations given therein, where the coeffi- 
cients are given as functions of p, u, apr CP and U. The excess quantities 
have been calculated from these values by means of eqn. (1). The corre- 
sponding ideal quantities have been estimated from the ideal mixing laws 
proposed recently by Douheret et al. [17]. The coefficients of the 
Redlich-Kister analysis are reported in Table 7, together with the weighting 
coefficients used and the values of both standard deviations, (a,)+: and 

Composition dependence of the excess differential coefficients 

As shown in Table 1, the differential coefficients are related to the second 
derivatives of either the free enthalpy G or the free energy F. The composi- 
tion dependence of the corresponding excess quantities is discussed in the 
next section. 
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Fig. 3. Variations of excess molar heat capacities C,!$, as a function of the mole fraction of 
methanol x2, at 298.15 K: a, C,“; b, CF. 

Isobaric and isochoric molar heat capacities 
These properties are necessary for predicting the temperature dependence 

of various equilibrium properties; C, and C, are related, respectively, to the 
second derivatives of G and I: with regard to the temperature T. As has 
been pointed out by Ogawa and Murakami [lo], “of the excess thermody- 
namic functions, CPE is related the most closely to the behavior of compo- 
nent molecules in the solution state”. More difficult is the interpretation of 
CF, since C, is a key thermophysical variable, depending on the various 
external and internal degrees of freedom of the molecules [18]. 

Our results support the foregoing conclusions of Kiyohara and Benson 
[9]. The deviations of C: (X standing successively for p and I’) from 
ideality are positive over the whole composition range. A maximum occurs 
in the water-rich region. The magnitude of this maximum is larger for CPE; 
for CE it is sharper and shifted towards the water-rich region [x2 = 0.20( C,“); 
xg = O.l4(CF)], as shown in Fig. 3. 

Isothermal and isentropic compressibilities 
As shown in Table 1, the compressibilities K, are the second derivatives 

of G and F with regard to the pressure p_ Isothermal or isentropic 
quantities correspond respectively to X = T or S. The compressibilities may 
be considered to be the sum of the instantaneous compressibility due to 
compression of the molecules and intermolecular distance, and the structural 
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Fig. 4. Changes in excess molar volume uE, excess molar compressibilities K: and excess 
molar expansibilities A;, as a function of the mole fraction of methanol x2, at 298.15 K: a 
lo6 uE; b 1014 K$ c 1014 Kf; d lo9 A:; e 10’ A:. 

compressibility due to breakdown of the intermolecular bonds accompany- 
ing the open structure of water. The excess coefficients ICC and excess molar 
quantities K,E are both negative over the whole composition range. The 
changes of KF and Kc have been plotted vs. x2, as shown in Fig. 4 (curves 
(b) and (c), respectively). The composition dependence of these two excess 
quantities is very similar, especially in the water-rich region, where the two 
curves (b) and (c) are almost indistinguishable; in both cases, a minimum is 
observed close to the equimolar mixture. These changes look like those of 
the excess molar volume uE (curve (a)), for which a minimum occurs at 
x2 = 0.50. As has been pointed out by Fort and Moore [19], the excess 
isentropic compressibility is approximately proportional to the strength of 
the interactions between unlike molecules in a mixture. This means that 
deviations from ideality arise not only from differences in molecular size but 
also from changes in hydrogen bonding. 

Isobaric and isentropic expansibilities 
The expansibilities AX are the second derivatives of G and F with regard 

to the pressure p and the volume I/. Isobaric or isentropic quantities 
correspond respectively to X=p or S. Both excess coefficients CY~ and 
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excess molar quantities AE, have been considered. As stated by Alary et al. 

[20], “like the other second derivatives of free energy functions . . . the 
thermal expansion coefficient specifies one aspect of thermodynamic 
fluctuations. While K . . . defines the magnitude of volume fluctuations, (Y 

reflects the co-variance in these fluctuations”. The composition dependence 
of the excess molar expansibilities A: and A: is shown in Fig. 4, where the 
changes of these excess quantities have been plotted vs. x2 (curves (d) and 
(e), respectively). A: is negative over the whole composition range; its 
changes are quite different from those of K:, since three extrema are 
observed: a minimum in the water-rich region (x2 2: O.lO), followed by a 
maximum at x2 = 0.27 and a second minimum in the methanol-rich region 
(x2 = 0.75). By contrast, A: is positive, except in the water-rich region 

where a minimum occurs at x2 = 0.025; then a maximum is observed at 
x2 = 0.27, followed by a steady decrease. The molecular significance of the 
extrema of A: may be attributable to structural transitions taking place in 
the mixture [7]. One might also conclude from the quasi-linear changes of 
A: and other excess properties that such behaviour is suggestive of a pseudo 
two-phase system; however, as has been emphasized by Benson et al. [9], the 
corresponding partial molar excess properties are not constant over the 
composition ranges concerned, which is not consistent with the proposed 
assumption. 

Fig. 5. Variations in excess pressure coefficients /3:, as a function of the mole fraction of 
methanol x2, at 298.15 K: a 10m5 j3:; b 10m6 p”,. 
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Isentropic and isochronic pressure coefficients 
The pressure coefficients p, are closely related to the second derivatives 

of G and F with regard to the temperature T and the volume I’. Isentropic 
or isochoric quantities correspond respectively to X = S or v. To our 
knowledge, no data relative to & and j3: are available from the literature, 
although they can be calculated from the recent results of Douheret et al. 
[17], relative to the water-acetonitrile system. The changes of @ have been 
plotted vs. x2 in Fig. 5 (curve (a)). A sharp maximum is observed at 
x2 = 0.05. The composition dependence of this excess quantity would un- 
doubtedly repay further consideration. At the moment it is known for only a 
limited number of systems, which precludes a detailed discussion here. 

Data relative to &, are also scarce, in spite of the fundamental impor- 
tance of this property, whose composition dependence is interpreted as 
being the result of the attractive and repulsive forces between molecules. 
Macdonald et al. [21] measured pr, at a number of temperatures in the range 
20-55 o C for several water + alcohol mixtures, but they did not calculate 
j3;. As shown in Fig. 5 (curve (b)), ( pv) E is positive except in the water-rich 
region, where a minimum is observed at x2 = 0.03; a maximum occurs at 
x2 = 0.33. Thus, the sign of /?F is opposite to that of vE. A similar 
composition dependence for v E has been reported by Griot et al. [22] for 
binary mixtures of organic solvents, and explained in terms of the creation 
of disorder in long-chain molecules. A systematic study of aqueous organic 
solvents would be worthwhile. 

Ideal and excess ultrasonic velocity 

The ultrasonic velocity u in a fluid is related to the isentropic bulk 
compressibility by the equation 

u = ( v/MK,)1’2 (21) 

As has been emphasized by Rowlinson [23], according to this definition u 
is a purely thermodynamic quantity. The experimental velocity is equal to u 
under conditions of negligible dispersion; it may therefore be regarded as an 
equilibrium property. 

Various approaches to the determination of ideal and excess ultrasonic 
velocity have been considered. However, a literature search revealed some 
misconceptions concerning the calculation of these quantities. This will be 
discussed in a subsequent section. A more well-founded method, proposed 
recently by Douheret et al. [l], was used in the present work. This method 
consists in rewriting the equation defining the variable under consideration 
z, itself a function of other variables zi, z2.. . , i.e. 

z=f(z,, z2...) (22) 

in terms of the ideal quantity zid using the equation 

Z id= f(zjd, zip...) (23) 
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This requires prior knowledge of the ideal mixing laws of the variables 
included in the defining equation. Consequently, uid may be written in the 

following way 

I (24) 

It should be emphasized that such an approach does not allow the 
weighting coefficients to be made explicit. uE is then obtained from the 
general eqn. (1). Its composition dependence has been determined from the 
Redlich-Kister analysis. The best overall fit was obtained by using # as a 
weighting coefficient, as shown in Table 8, where the values of the standard 
deviations urcX,) and u,~+;) are reported. The changes of uE have been plotted 
vs. +;, as shown in curve (a) of Fig. 6; uE is positive over the whole 
composition range, with a maximum at & 2: 0.46. When uE is plotted vs. 
x2, the maximum at x2 2: 0.27 is followed by a quasi-linear decrease beyond 
the equimolar mixture. A symmetrical behaviour may be taken as indicative 
of the structure-breaking nature of the methanol molecules. This has been 
observed for several excess properties: uE, KF, Kt and, to a lesser extent, 

P;. 
For other variables, such as @ and, to a lesser extent, Cp” and CF, the 

extrema are observed in the water-rich region; this unsymmetrical behaviour 
could be attributable to weak hydrophobic effects, reflecting the occurrence 
of structural interactions in solution. These phenomena are characterized by 
their low magnitude and the narrow range of concentrations within which 
they can develop. It should be emphasized that both water and methanol are 
extensively associated by hydrogen bonding, but their two types of associa- 
tion are quite dissimilar and mutually incompatible. Franks and Ives [24] 
have argued that methanol is probably incorporated into the water network 
by substitutional (and not interstitial) association. Antoniewicz et al. [25] 
consider that this assumption agrees very well with their quasi-chemical 
interpretation of the ultrasonic velocity in this system. 

TABLE 8 

Values of the standard deviation, as a function of the weighting coefficient & and of the 
number of parameters n of the Redlich-Kister eqn. (18), for the excess ultrasonic velocity 

5 6 7 8 

X, 1.00, (n,)a 0.43, ( u‘j)a 0.35, 0.33, ( a5)a 
$7 0.59, 0.32, 0.33, (a,,a,)a 0.33, (a4-a7)a 

a The coefficients a, mentioned within brackets are meaningless; the uncertainty on their 
absolute value is larger than or of the same order of magnitude as the value itself. 
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Approximation in the calculation of the excess quantities 

In a recent study [l] Douheret et al. emphasized that various approaches 
to the determination of ideal and excess thermodynamic quantities have 
been considered. A literature search has clearly revealed some misconcep- 
tions about the calculation of these quantities. These errors are generally due 
to incorrect formulation of the ideal mixing laws: either the weighting 
coefficient is inapprioriate; or the multiplying term is erroneous. 

The most common error is generally due to fjC,, being ignored, which 
amounts to making it equal to 1. The difference B&(,, between the ap- 
proximate and rigorous values of the weighting coefficients of the ideal 
mixing laws is then equal to 

(25) 

The orders of magnitude of errors introduced by such an assumption are 
shown in Fig. 7. Large discrepancies are observed for some variables, e.g. As 

and, to a lesser extent K,. For C, the approximation error appears to be 

300 

200 

im 

$ 
c 
-2 

100 

0 
0 0.2 0.4 0.6 0.8 1 

q,” 

Fig. 6. Changes in excess ultrasonic velocity and in pseudo-excess ultrasonic velocity, as a 
function of the ideal volume fraction of methanol +;, at 298.15 K: a, uE; b, ~jjd in eqn. (24), 
approximated by a volume fraction averaging; c, u““‘: calculated from the model of Natta 
and Baccaredda [26]; d, ~“~~1); e, zPq$ f, LP~“‘,). 
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Fig. 7. Differences 6+,,,, = [x, - xifiCz,] in the values of the weighting coefficients calculated 
respectively with and without the multiplying term fiC,,. for the water (1) + methanol (2) 
system, as a function of the mole fraction of methanol xq, at 298.15 K: ujr S+rCA,j; b,, 10 

8+i(K,); c,, IO2 %(c?“,. 

negligible, but this latter case is fortuitous and in no way justifies the 
multiplying term fit,, being ignored, for a quantitative, or even a qualitative 
interpretation. 

The calculation of uld and uE has given rise to many different and 
approximate approaches. The use of eqn. (24) implies knowledge of the 
rigorous ideal law of mixing for u and us. Sometimes, K: is approximated 
by a volume fraction averaging. Introduction of such an expression into the 
defining equation of u“~~” obviously gives rise to erroneous values of uE, as 
shown in Fig. 6 (curve (b)). 

Natta and Baccaredda [26] developed an intuitive model from the two 
basic thermodynamic criteria of ideality. According to these authors, the 
ideal ultrasonic velocity in a binary mixture is given by the equation 

2.4 
“id ” = 

u:u; 

+; + (pv,u,’ 

The validity of this expression was discussed many years later. The model 
was supported by Ernst and Glinski [27], but Kiyohara et al. [28], in a reply 
to these authors, argued against its soundness. Changes in the pseudo-excess 
quantity calculated from eqns. (1) and (26) plotted vs. $$, are shown in Fig. 
6 (curve (c)). 
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Various authors have obtained a so-called “ideal” ultrasonic velocity from 
the following equation 

U “id” = C +U+ 
(27) 

The weighting coefficient Gi has been variously identified with the mass 
fraction of iwi (Schaafs [29]), the volume fraction +y (Utter and Kling [30]), 
and xi (Lara and Desnoyers [12]). Consequently, a number of different 
pseudo-excess quantities have been calculated from eqns. (1) and (27). The 
changes of these vs. the composition of the system are shown plotted vs. & 
in Fig. 6 (curves (d) to (f)). Such quantities represent nothing more than 
departures from a given additivity rule. 
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