THERMAL BEHAVIOUR OF 2-HYDROXYADAMANTANE

SALMAN R. SALMAN *

Chemistry Department, College of Science, University of Baghdad, Jadiriyah, Baghdad (Iraq)

KAFAA F. ABAS

Petroleum Research Centre, Scientific Research Council, P.O. Box 10039, Baghdad (Iraq) (Received 31 May 1988)

ABSTRACT

Differential thermal analysis (DTA) of 2-hydroxyadamantane was performed. X-ray diffraction, ¹³C NMR and DTA results for 2-hydroxyadamantane indicate that the two peaks which appear in the DTA curve at 326.16 and 391.16 K are due to phase transitions. The thermodynamic data for the two transitions were calculated and compared with those for 1-hydroxyadamantane.

INTRODUCTION

IR, ¹H NMR [1-4], X-ray diffraction and DTA [5-7] have been used to study the crystalline phase transition of several compounds. Studies of the phase transition of adamantane under pressure [8-12] have revealed a change from a disordered f.c.c. structure to an ordered body-centred tetragonal structure. Little work has been done on the thermal behaviour of adamantane [13] and its derivatives at atmospheric pressure. In a previous communication, Salman et al. [14] noted that the DTA curve of 1-hydroxy-adamantane was different from that of adamantane and its derivatives, and that there was an extra peak which was due to a phase transition.

In this paper, we extend our investigation to 2-hydroxyadamantane.

EXPERIMENTAL

2-Hydroxyadamantane (Aldrich) was used without further purification. The X-ray diffraction analyses were run on a Phillips diffractometer under recording conditions of 50 KV, 20 mA, with a chart speed of 2 cm m⁻¹, and

^{*} To whom correspondence should be addressed.

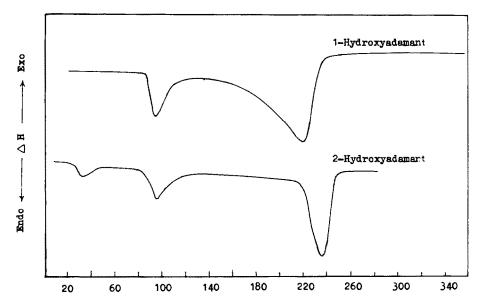


Fig. 1. DTA curves of 1-hydroxyadamantane and 2-hydroxyadamantane.

a goniometer speed of 2° min⁻¹. The ¹H NMR analyses were run on a Varian FT 80A machine operating at 80 MHz. The samples were run as solutions in CDCl₃ with TMS as internal reference.

Thermal analysis was performed in a nitrogen atmosphere with a flow rate of 10 l h^{-1} , using a special purpose cell. The heating rate was $10 \,^{\circ}\text{C}$ min⁻¹. Aluminium oxide was used as a reference. The experimental error was within the limit of $\pm 3 \,^{\circ}\text{C}$.

RESULTS AND DISCUSSION

The DTA curves for 1-hydroxyadamantane and 2-hydroxyadamantane are presented in Fig. 1. The sublimation temperatures of 1-hydroxyadamantane and 2-hydroxyadamantane were 529.16 and 516.16 K respectively. In our previous communication [14] we showed that only 1-hydroxyadamantane gives an extra endothermic peak at 369.16 K.

Figure 1 indicates that 2-hydroxyadamantane has two extra peaks: one which is very small, at 325.16 K, and a second at 391.15 K. The natures of these peaks were investigated using various techniques:

- (1) There was no difference between ¹H NMR spectra taken in CDCl₃ before and after the second transition.
- (2) X-ray diffraction was recorded for the original 2-hydroxyadamantane before heating (Fig. 2a), and after heating up to 395 K (Fig. 2b). These spectra reveal some change in the crystal structure of 2-hydroxyadamantane both before and after heating.

- (3) The DTA curve for the solid residue, which was collected at 395 K and cooled, is similar to that shown in Fig. 1. This indicates that the two transitions are reversible.
- (4) The ¹³C spectra of solid 2-hydroxyadamantane at different temperatures support the occurrence of these two transitions [15].

All the above results indicate that the absorption at 391.16 K is due to an ordered \rightarrow disordered solid phase transition. The thermodynamic properties of 2-hydroxyadamantane were calculated according to the method given by David [16] and the data compared with those obtained for 1-hydroxyadamantane (Table 1). It can be seen that the heat change associated with the first transition was very small (0.3 kJ mol⁻¹), while that associated with the second transition was 3.74 kJ mol⁻¹.

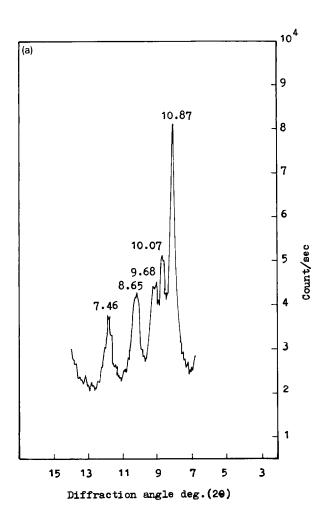


Fig. 2. a, X-ray spectrum of 2-hydroxyadamantane. b, X-ray spectrum of 2-hydroxyadamantane after heating up to 395 K.

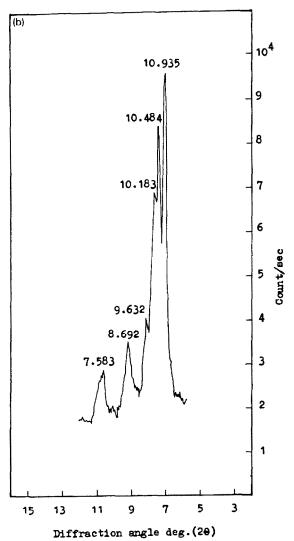


Fig. 2 (continued).

TABLE 1
Thermodynamic properties of 1-hydroxyadamantane (1-HA) and 2-hydroxyadamantane (2-HA)

T(K)			$H \text{ (kJ mol}^{-1})$			$S (J \text{ mol}^{-1} K^{-1})$		
	1-HA	2-HA		1-HA	2-HA		1-HA	2-HA
$\overline{T_1}$		325.16	H_1	_	0.30	S_1		0.92
T_2	369.16	391.16	H_2	2.50	3.74	S_2	6.77	9.56
T_3	529.16	516.16	H_3	7.13	7.75	S_3	13.25	15.02

ACKNOWLEDGEMENTS

The authors wish to thank the Aldrich Chemical Co. Ltd., England., for providing a sample of 2-hydroxyadamantane, and N.M. Al-Derzi for her helpful assistance with X-ray measurements.

REFERENCES

- 1 R.M. Silverstein, C.G. Bassler and T.G. Morril, Spectrometric Identification of Organic Compounds, Wiley, London, 1974.
- 2 L.M. Jackman and S. Sternshell, Application of NMR Spectroscopy in Organic Chemistry, Pergamon, Oxford, 1969.
- 3 R.C. Mackenzie, Differential Thermal Analysis, Vol. 1, Academic Press, London, 1970, p. 630.
- 4 R.C. Mackenzie, Differential Thermal Analysis, Vol. 1, Academic Press, London, 1970, p. 631
- 5 H.L. Spier and K.G. Van Senden, Steroids, 6 (1975) 871.
- 6 T. Sakuri and M. Yabe, J. Phys. Soc. Jpn., 13 (1958) 5.
- 7 R.C. Mackenzie, Differential Thermal Analysis, Vol. 1, Academic Press, London, 1970, p. 456.
- 8 T. Ito, Acta Crystallogr. Sect. B, 29 (1973) 369.
- 9 K. Hara, G. Schuster and H.G. Drickamer, Chem. Phys. Lett., 47 (1977) 462.
- 10 K. Hara, J. Osugi, I. Taniguchi and K. Suzuki, High Temp. High Press., 12 (1980) 221.
- 11 K. Hara, Y. Katou, J. Taniguchi and K. Suzuki, Chem. Lett., (1980) 803.
- 12 K. Hara, Y. Katou and J. Osugi, Chem. Soc. Jpn., 54 (1981) 687.
- 13 S.S. Chang and E.F. Westrum, Jr., J. Phys. Chem., 64 (1960) 1546.
- 14 S.R. Salman, E.Z. Said and K.F. Abas, Thermochim. Acta, 111 (1987) 21.
- 15 S.R. Salman and J.C. Lindon, unpublished results.
- 16 D.J. David, Anal. Chem., 14 (11) 1964.