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ABSTRACT 

A study of the best governing equation for the linear flow of heat in a metallic bar has 
been made. The mathematical solutions for the steady-state temperature distribution and for 
the cooling are not unique. Three different equations describing the steady state were found 
for all the cases studied. These equations agree within the statistical error. For the cooling, 
two types of solutions have been found which depend on the temperature gradient in the bar. 

INTRODUCTION 

In liquids and gases the transfer processes of conduction, convection and 
radiation can occur simult~eously. In transparent solids, conduction and 
radiation transfer can both occur, while the flow of heat in opaque solids 
takes place exclusively by conduction. The physical phenomena, the funda- 
mental laws, the thermophysical properties and the characteristic mathe- 
matical formulations of the process of heat transfer in matter are topics 
which have been reported in the literature [1,2]. However, temperature 
dist~butions, heat rates, temperature-time histories, etc., are generally com- 
plicated and in many cases quite difficult to deal with. To overcome these 
difficulties, physical and geometrical simplifications are used to obtain 
useful results. Thus, although it is known in advance that the thermophysical 
properties depend on the temperature, it is a reasonable approximation to 
consider them as being independent of temperature whenever the tempera- 
ture variation is not large, or whenever the physical problem involves no 
phase changes or chemical reactions. Other simplifications derive from the 
geometry of the problem: for example, when the diameter of a rod is so 
small as compared with its length that there will be no radial temperature 
distribution, but there will be a large axial temperature distribution, etc. 

In some cases the mathematical model chosen to treat the problem does 
not work because the simplifications used are not optimal, but a different 
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method can be found to explain the same problem that gives the correct 
results. Therefore, the mathematical equations can be different depending 
on the particular reasonable approximation taken. 

In this study, starting from the temperature distribution in a metallic bar 
for (i) the steady state and (ii) its cooling, we have tried to fit these 
experimental data to some mathematical equations using the appropriate 
statistical methods [3,4], in order to obtain the optimal governing equations. 

FORMULATION OF THE GOVERNING EQUATIONS 

We consider a bar characterized by a constant area of cross-section w, 
length L, perimeter p, conductivity K, density p, specific heat c, diffusivity 
K and surface conductance H. The general method is to consider the case 
where the cross-section of the bar is smaller than its length, so that the flow 
of heat is predominantly in one direction, there being small losses in the 
perpendicular direction. 

If the bar lies along the x axis, the heat gain by flow between the two 
faces of an element in x and x + dx is 

wKedx 
dx* 

where 0 is the temperature. 
The heat lost by radiation at the lateral surface is given by the Newton 

cooling law 

H( 8 - 13,)p dx (2) 

where 0, is the temperature of the medium into which the bar radiates. 
The total gain of heat in the element is 

al9 
wcp-dx 

at (3) 

Balancing eqns. (1) to (3) and setting Y = Hp/cpw and K = K/PC gives 

ae 
-=K$-@-8,) 
at 

Equation (4) permits two cases to be differentiated: (i) when there is 
radiation into a medium at constant temperature, and (ii) when there is no 
radiation. In the first case eqn. (4) takes the form 

a9 a28 -_=K- 
at ax2 

(5) 

and the problem of the distribution of temperature in the bar is reduced to 
one of linear flow. 
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fn the second case, the constant temperature of the medium may be taken 
as the zero of our scale and, if we make the change of variable 8 = 
ti exp( - vt), eqn. (4) reduces to 

au a2u 
x=Ks (6) 

which is similar to eqn. (5). 
A number of simple solutions of eqn. (4) are reviewed here and are 

applied to the problem under study [5]. 

Steady state 

The steady state is the particular case when the flow of heat is invariant 
with time. Then eqn. (4) becomes 

d28 -- 
dx2 

m28=0 (7) 

where m2 = Hp/Kw. 
The general solution [6] of eqn. (7) has the form 

0 = 8, eSmX + 0, e+mx (8) 

where & and t$ are constants that must be calculated from the suitable 
boundary conditions. 

(a) If the bar is considered semi-infinite, the ends are at constant tempera- 
tures 8, (x = 0) and 6, = 0 (L = co), and eqn. (8) reduces to 

8 = 6, eSmx (9) 

(b) If the bar is finite with 8, at x = 0 and 0, at x = L the solution of 
eqn. (8) will be 

8 _ 8, sinh[m( L - x)] + 8, sinh(mx) 
- 

sinh( mL) (10) 

(c) If there is no flow of heat from the end x = L of the bar (S, = 0) we 
have in place of eqn. (10) 

8=8 coshbdL-41 
1 cosh( mL) 

(11) 

Once the steady state has been reached, it is attempted to fit the data 
obtained from the cooling of the bar to the best solution of eqn. (4). The 
common procedure is to consider the cooling as an infinite series of 
exponential decay with time, but in practice the problem is to know when 
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the series converges, i.e. how many terms must be taken to fit our experi- 
mental results. 

~ponenti~ decay is not the only solution to the problem because other 
theories can be applied to the cooling, such as the theory which considers 
that the temperature decay with time is proportional to the inverse of the 
fourth power of the temperature. 

Both these methods were used in this study and the results from them 
compared. 

EXPERIMENTAL PROCEDURE AND RESULTS 

The study object used was a cylindric iron bar with the physical and 
geometrical characteristics shown in Table 1. As the cylinder has a small 
cross-section compared with its length, the problem is one of linear flow in 
which the temperature is specified by the time and the distance x measured 
along the rod. To measure the temperature, several thin holes were drilled 
pe~endicularly from the generatrix to the axis, where chromel-alumen 
thermopars were placed and connected to a digital thermometer. The 
distances between thermopars are shown in Table 2 (first column) having 
been chosen taking into account the temperature gradient. The first thermo- 
par, taken as the coordinate origin, was 11 cm from the first end of the bar. 

TABLE 1 

The physicaf and geometrical characteristics of the iron bars studied 

p=(7.8~0.1)x103 kgme3 
c= (4.52~0.01)x102 J kg-’ K-’ 
iy= (~0.3*0.1) J s-l K-’ 
K = (2.28 kO.01) x lop5 m* S-I 
f, = (155-e0.1)X10-2 m 
d= (550.0_e0.5)x10-4 m 
p = (172.8 k 0.1) x 10m3 m 
w = (23.8+ 0.1) X 10u4 m2 

TABLE 2 

The initial conditions used to obtain the three steady states I-III 

Steady Potential difference, V Intensity, I 
state 09 (A) 

Time 
(hl 

I 45 0.35 4 
II 58 0.47 5 
III 80 0.65 12 
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TABLE3 

The temperature distributions corresponding to the three steady states I-III 

X 01 e II 8 III 

(X10w2 m) 

0.0 
4.0 

10.0 
16.0 
25.5 
36.0 
51.0 
66.0 
81.0 
96.0 

116.0 
136.0 

25.4 
21.9 
17.4 
13.7 

9.4 
6.2 
3.3 
1.5 
0.0 
0.0 
0.0 
0.0 

34.9 61.5 
29.9 53.1 
24.3 42.8 
19.4 34.7 
13.6 25.0 

9.3 17.5 
5.2 10.4 
2.7 6.2 
1.5 3.7 
0.8 2.2 
0.6 1.2 
0.4 0.7 

The bar was heated from the end by a resistive coil connected to an a.c. 
variable transformer. The bar was held on two wooden supports and isolated 
by means of asbestos cord. The room temperature was taken from a 
thermopar inserted from the genera&ix to the centre of a cylindrical copper 
block (5 cm high, 9 cm diameter). 

Steady state 

Table 2 lists the initial conditions for the three (I-III) steady-state cases 
studied. The last column in Table 2 gives the time spent in reaching the 
steady state, and I’ and 1 are the conditions used to heat the bar. The final 
values of the temperature are shown in Table 3, where 8 is the temperature 
excess with respect to the medium. Equations (9)-(11) were used to fit these 
data. The results of the fits for the first steady state 8, are given in Table 4, 
where CI is the standard deviation and r2 is the correlation coefficient. (The 
correlation coefficient, r2, gives the goodness of fit of the experimental data 
to a curve. If r2 = 1 the curve is perfect. The values of r2 are between 0 and 
1.) As can be seen from Table 4 the three different equations give the same 

TABLE4 

Values of the fit corresponding to the first steady state I 

wuation 8, + u m&a r2 

9 25.7 + 0.6 4.0 Ifr 0.06 0.99 
10 25.7kO.6 4*0+0.1 0.99 
11 25.6kO.7 4.0 * 0.2 0.99 
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TABLE 5 

The fit for the steady states II and III using eqns. (9)-(11) 

Steady 
state 

II 
III 

e,+ 0 m*a r2 

34.9kO.7 3.7kO.2 0.99 

61.5 + 0.7 3.5 + 0.2 0.99 

results within the statistical error, but the tendency is that eqn. (9) is more 
accurate, corresponding to a single exponential decay with distance X. 
Equation (9) has the advantage that it is independent of the bar length L, in 
contrast with the other equations. 

The same procedure was carried out for the other two steady states and 
the results were qualitatively the same. The final mean values for cases II 
and III from fitting to eqns. (9)-(11) are given in Table 5, where the 
standard deviation and the correlation coefficient are as in case I. 

In general, when a physics problem may be explained by several methods, 
the easiest solution is chosen. This is the reason why, for this range of 
temperature, the exponential decay with distance x for the iron bar is 
usually chosen. To illustrate the exponential behaviour the last steady state 
III is plotted in Fig. 1. The curve represents the temperature distribution 
(left ordinate) versus distance. When the logarithmic temperature (right 
ordinate) is plotted versus distance, a straight line is obtained which verifies 
the exponential decay for the temperature. 
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Fig. 1. Temperature distribution for steady state III. Verification of the exponential be- 
haviour. 
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Cooling 

Starting from the temperature distribution in the steady state, the cooling 
was performed by switching off the heater and removing it from the end of 
the bar in order to avoid the thermal inertia of the heater. The first 
temperatures were taken after 1 min and the other measurements were done 
every 13 min until 320 min when the temperatures in the bar were seen to be 
near room temperature. 

The result presented here is the cooling starting from steady state III. The 
temperatures 8,, e,, 8,, . . . , f3; are those at x = 0.0, 4.0, 10.0,. . . xi (see Table 
3), such that Si is the cooling temperature distribution at the point i distant 
xi from the first point. 

Table 6 lists the results for the first six points in the bar. The standard 
deviations for the constants are + 1 and for the exponents kO.02. The 
correlation coefficients for these results are r2 = 0.99 in all cases. When the 
temperature is higher the temperature is much better fitted by a double 
exponential, because the first exponential governs the faster decay of the 
temperature at the start of cooling, while the second exponential governs the 
decay for long times after the cooling has begun and when the temperature 
excess is not so large. If the starting cooling temperature is lower, the first 
exponential decreases compared with the second exponential, and, when the 
difference between the bar and the room temperatures is not too high, the 
cooling can be fitted with a single exponential (f3,) until the points are 
reached where the bar is not affected by the temperature gradient and the 
temperature is already constant with time and close to the room tempera- 
ture. Figure 2 shows the results obtained for the cooling of the bar, and it 
can be seen how the thermal inertia of the bar manifests itself when the 
temperature excess is small. 

The cooling data were not only fitted to the single and double exponential 
equations, but also to the power decay law. Figure 3 shows the plot of the 
inverse fourth power of the temperature against time for the first point in 
the bar (0,). Figure 3 shows the linear behaviour of the cooling, the fit being 
the line 5 Ii4 = 42t + 0 36 with r2 = 0.99. When other points in the bar . , 

TABLE 6 

The fit for the cooling starting from steady state III 

36e-0.46’ + 25e-0.141 

34e-0.40’ +25e-0.‘3’ 
27e-0.43’ + 25e-0.‘3’ 
lge-O&U +22e-0.13’ 
15e-0.35’ + 19e-0.12r 
19e-0.13’ 



Fig. 2. Cooling curves for each point in the iron bar. The cooling was started from steady 
state III. 

1 3 5 7 9 11 13 ?5 17 t x 60s 

Fig. 3. Linear time behaviour of the cooling for the inverse of the fourth power of the 
temperature. 
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( e,, e,,...) were taken, the fits to the linear regression proportional to e-1/4 
worsened because the temperature excess was smaller. 

Another kind of fit, as a single potential decay, was tried but was worse in 
all cases. 

The same studies were carried out for the cooling of the other steady 
states I and II and the results were qualitatively the same. 

CONCLUSIONS 

In theory, the solution of the heat transfer in a material with some given 
boundary condition is unique. In practice, this is not exactly true because 
some factors affect the uniqueness of the solutions. These factors are related 
to the experimental procedure, the quality and geometry of the materials 
and, most of all, to the temperature range [7]. From the results obtained it is 
concluded that the governing equation for temperature distribution in the 
steady state and in the cooling process is not unique. 

For the example described in this paper, there are three equations for the 
steady state which each have a different meaning: a semi-infinite bar, eqn. 
(9); a finite bar with flow of heat from the end, eqn. (10); and a finite bar 
without flow of heat from the end, eqn. (11). These equations give the same 
results within the statistical error, and permit the temperature distribution in 
the bar to be explained. 

The cooling experiment showed how the temperature affects the govem- 
ing equations. When the temperature difference between any point of the 
bar and the room are relatively high, the best fit is a double exponential; 
when the differences are not so high, the equation is a single exponential; 
and when the differences are relatively small, the exponential becomes a 
linear behaviour with time. However, the exponential decay is not the 
unique solution of the problem either, because the inverse fourth power law 
turns out to be valid when the temperature differences between the bar and 
the room are relatively high. Thus, the solutions of the cooling depend on 
the temperatures of the steady state from which the cooling is started. 

These are the results for an iron bar, which we considered, in principle, to 
be the easiest object to study. When the same mathematical analysis is made 
for a bad conductor and a transparent medium, such as poly(methy1 
methacrylate) (PMMA), the results are quite different, as will be shown in a 
forthcoming paper. 
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