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ABSTRACT 

A new procedure for characterizing calorimeters is described in which the coefficients of 
the recursive equation modelling the calorimeter are calculated directly. The new method is 
considerably faster than previous least-squares techniques, even when more experimental 
thermogram points are used, and although it is more affected by noise, the coefficients it 
yields are valid for frequencies below those that are so affected. 

INTRODUCTION 

The deconvolution of the signals produced from properly characterized 
calorimeters is relatively straightforward, but the rapid, accurate characteri- 
zation of calorimeters in the first place is still the subject of research. 
Whatever the deconvolution method employed, in subsequent work in which 
the calorimeter is used, the accuracy of the parameters characterizing it 
determine the quality of the deconvolution process, especially in time-vary- 
ing systems, in which characterization errors are accumulative [l]. In recent 
years, several methods have been developed for determining the time con- 
stants of calorimeter systems, including the least-squares estimation of the 
unit pulse response [2,3] and the use of PadC approximations [4], modulating 
functions [5], Mellin deconvolution [6] or the z-transform [7]. In this article 
we present a new least-squares characterization method which, on a micro- 
computer, takes just a few minutes to approximate the coefficients of the 
calorimeter equation (as against the several hours taken by previous meth- 
ods). The coefficients obtained can either be used directly for deconvolution 
by means of the discrete transfer function [2] or converted to time constants 
for use in other deconvolution procedures. 
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THEORETICAL BACKGROUND 

As is well known, a calorimeter can be represented in the frequency 
domain by a transfer function of the form 

(as the sensitivity of calorimeters is easily calculated, this factor has been 
omitted here for simplicity, i.e. we assume its value to be unity). 
equivalent of eqn. (1) in the time domain is the unit pulse response 

h(t) = k Ai exp(-t/Ti) 
i=l 

where 

The 

(2) 

(3) 

(eqn. (2), 1 k 11 th f i e a 0 er unctions of time in this article, refers to t > 0; all 
such functions are defined as identically zero for t < 0). Equation (2) shows 
that the coefficients ri can be regarded as the time constants characterizing 
the exponential processes within the calorimeter. Note that eqn. (2) does 
indeed correspond to a calorimeter with unit sensitivity (H(0) = l), as 

j+?z(t) dt = j+m iAi exp(-t/r,)dt= iAi7,=l 
--oo --M i=i i=l 

Because in modem calorimetry thermograms are obtained by periodic 
computer-controlled sampling of the calorimeter output signal (see Fig. l), 
our task is to find a discrete transfer function H(z) that transforms a known 
discrete input x[k] obtained by sampling the calorimeter input signal x(t) 
with period T (so that x[k] = x(kT)) into a discrete signal y[k] such that 
y[k] = y(kT), where y(t) is the calorimeter output signal. In other words, 

H(s) fIj$ y(t) 

&I 
H(Z) y[l;l 

Fig. 1. Simulation of a system defined by H(s) by means of a discrete system defined by 
H(z). x[ k] = x(kT) and y[k] = y(kT), where T is the sampling period. 
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Fig. 2. An analog signal f(t) (a) compared with the sequence of sampled values f[k] (b). 
Clearly, the integral of f(t) is in general different from the sum of the f[ k]. 

we wish to find the discrete transfer function H(z) that characterizes a 
discrete system simulating the analogue system characterized by H(s). 

If H(s) is known, the solution to the above problem is as follows [8]. Let 
h[ k] be the result of sampling the unit pulse response h(t) with period T 

h[k] =h(kT)= tAiexp(-kT/rj)= eA,(w,)” (5) 
i=l i=l 

where wi = exp( - T/T,). The sensitivity of the system defined by h[k] is 

M= f h[k] = i A, f Wk = 5 A,/(1 - Wi) 
k=O i=l k=O I=1 

(6) 

which in general is not unity (see Fig. 2). Approximating wi = exp( - T/T,) 
by 1 - T/T~ in fact yields M = l/T, and we adopt as our discrete simulator 
the system defined by the unit pulse response 

h[k] =M-‘~Ai exp(-kT/T,)=M-‘i A,(w,)” (7) 
r=l i=l 

The desired discrete transfer function H(z) is the z transform of h[ k] 

H(z)= 5 h[k]z-k=M-l &i,z/(z- y) (8) 
k=O i=l 

n-1 n-l 

c bizn-’ 
i=o 

x0 bFi 
= 

;gouizn-l = 2 a,z-’ 
(9) 

i=o 

where a0 = 1 and the other ai and bj terms are functions of the Ai, w, and 
M terms. 
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If X(z) and Y(z) are the z transforms of x[ k] and y[ k] respectively, then 
Y(z) = Wz)X(z), so that by eqn. (9) 

n-l 

X(z) c b,z-’ = Y(z) 5 a,~-~ 
i=O i=O 

which is equivalent to the recursive time domain equation 

y[k] + ka,y[k-i] =nclbix[k-i] 
i=l i=O 

(10) 

(11) 

This equation allows the output sequence y[k] to be constructed from the 
initial conditions and the input sequence x[k]; our task is to estimate the 
coefficients a, and b,, from which the time constants 7i and 7i* can be 
obtained, if desired, via eqns. (9), (8) and (3) and the definition of the wi. 

ESTIMATION OF THE COEFFICIENTS 

For large enough values of N, the ai and bi of eqn. (11) can be estimated 
as follows from known values of y[k] and x[ k] for k = 0, . . . ,N. The 
corresponding set of N + 1 equations of the form of eqn. (11) (one for each 
value of k) can be written in matrix form as 

FP=S 

where 

(12) 

[ 

x PI x[-l] . . . x[l-n] -y[-11 -y[-21 . . . -Y[-nl 

F= XVI x[O] . . . x[2-n] -Y PI -y[-1] . . . -vP-RI 03) . . . . . . . . . . . . . 
x[N] x[N-1] . . . x[N-n+l] -ytN- 11 -y[N-21 . . . -y[N-nl 1 

P= (b, b, . . . b,_, a, a2 . . . a,)’ 04) 

and S=(y[O] y[l] . . . y[N])’ 05) 

(primes indicate the transpose operation); the least-squares estimation of the 
ai and bi amounts to finding the ai and bi that minimize the functional 

I= +(S- FP)‘(S- FP) (16) 

The desired values are given by 

SI 
6p = -F’S+F’FP=O (17) 

i.e. 

P = ( F’F)-~F’S (18) 

The greater part of the time taken to compute P from eqn. (18) consists 
of the time taken to find the ‘pseudo-inverse’ matrix [8,9] (F’F)-‘, which is 



much shorter than the 
non-linear estimation or 
z transforms. 
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time required by methods that employ iterative 
the numerical calculation of Laplace transforms or 

The characterization method described above was tested by computer 
simulation of a system of unit sensitivity defined by the parameters 

71 = 200 s, 72 = 90 s, 73 = 10 s > rl* = 20 s 

The values of these parameters were estimated by the proposed method 
after simulating the output corresponding to each of three input signals: the 
delta function, the Heaviside function, and a pulse lasting 60 sampling 
periods. In each case, the first 300 samples of input and output were used 
for parameter estimation. The influence of sampling period on the accuracy 
of the method was investigated by performing the characterization for 1 s, 
2.5 s and 5 s sampling periods. Figures 3a and 3b show the simulated input 
and output signals respectively. 

As Table 1 shows, the best results were achieved by the longest sampling 
period. This is logical, as 300 five-second sampling periods cover 1500 s of 
signal, as against only 300 s of signal for the one-second sampling period; 
the longer sampling period therefore affords information concerning a 
greater length of signal. Sampling 1500 s of signal with a period of 1 s would 
of course enable much greater accuracy to be attained than by sampling 
every five seconds, but would be computationally much costlier. As it is, the 
results show that highly satisfactory accuracy is achieved with relatively few 
sample points so long as about 77, seconds of the input and output signals 
are covered. Table 1 also shows that though the best estimations were 
obtained using the delta function as input, very good estimates were also 

1.5 y 
I, 

1 

0.5 

0 

(0 

‘- 
0 

Fig. 3. Simulated input signals (a) used to test the proposed characterization method, and the 
corresponding simulated responses (b). (1) corresponds to the delta function input, (2) to the 
Heaviside (step) function and (3) to a 60T pulse. 
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TABLE 1 

Results of using the proposed method, with various different input signals and sampling 
periods, to characterize a system whose true time constants were T, = 200 s, ~z = 90 s, TV = 10 
s and r,* = 20 s 

T delta step pulse T delta step pulse 

71 

1 195.834 236.266 212.710 1 Z.959 83.508 87.171 
2.5 200.917 203.501 201.526 2.5 89.800 89.258 89.665 
5 199.991 199.629 199.623 5 90.002 90.080 90.085 

73 
* 

1 9.999 9.966 9.981 1 Zl.003 19.876 19.925 
2.5 10.000 9.999 9.998 2.5 20.018 19.997 19.995 
5 10.000 10.000 10.002 5 20.073 20.000 20.003 

afforded by the step function and pulse. This is a very pleasing result, 
because when it comes to feeding inputs into a real calorimeter, the delta 
function is much more difficult to provide than the other two, which are the 
signals commonly used in practice. 

INFLUENCE OF NOISE 

The influence of noise on the accuracy of the proposed method was 
studied by using it to characterize the same system as above using a 
Heaviside input signal and a 5 s sampling period when white noise was 
added to the output. Signal-to-noise ratios of 60, 70, 80, 90 and 100 dB were 
used in different runs. 

The results (Table 2) show that the method is quite sensitive to noise. This 
was to be expected, as noise was not taken into account in the model used in 
developing it. The possibility of modifying it to take noise into account is 
currently being investigated. It may be pointed out, however, that in spite of 
the inaccuracy of the time constants for S/N ratios of less than 100 dB, the 

TABLE 2 

Results of using the proposed method, with a Heaviside input signal and a sampling period 
T = 5 s, to characterize the same system as in Table 1 with various levels of noise in the 

output 

S/N ratio (dB) 

60 70 80 90 100 

71 225.641 216.677 210.772 205.591 200.592 
72 66.783 72.308 77.341 83.624 89.131 
73 _ _ 4.271 6.962 9.661 
r: 7.778 6.956 9.958 15.300 19.400 
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Fig. 4. Amplitudes of transfer functions obtained using noisy output signals. (a) S/N = 100 
dB; (b) S/N = 90 dB (effectively identical to (a)); (c) S/N = 80 dB; (d) S/N = 70 dB; (e) 

S/N = 60 dB. 

transfer function is only badly inaccurate at frequencies greater than those 
that in practice have a significant effect (Fig. 4), at least so long as 
S/N > 80 dB. For S/N < 80 dB, the lack of any meaningful estimate of r3 
gives rise to additional constriction of the useful bandwidth. 

CONCLUSIONS 

The calorimeter characterization procedure described in this article af- 
fords the coefficients of the recursive equation equivalent to the calorimeter 
by a direct (non-iterative) calculation whose lengthiest stage is the inversion 
of a 2n X 2n matrix (n being the number of poles of the system). Decon- 
volution of the output signals corresponding to unknown inputs is then 
immediate by means of the z transform. The procedure described is much 
faster than those developed hitherto, and is highly satisfactory when applied 
to signals with signal-to-noise ratios greater than 70 dB. 
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