STUDIES OF THE SILICON DIOXIDE-DOLOMITE SYSTEM BY THERMAL ANALYSIS

Katalin Sinko¹, Béla Migaly² and Magda Gábor¹

- l Institute of Inorganic and Analytical Chemistry of L. Eötvös University, Budapest, Hungary
- 2 Central Research and Design Institute for Silicate Industry Budapest, Hungary

ABSTRACT

A study of the processes occurring in the SiO_2 -dolomite system at a temperature in the range 25-1500 $^{\circ}C$ was carried cut with the use of thermoanalytical and high temperature X-ray diffraction methods. The purpose of this study was to reveal the effect of the composition on the transformation processes applied to similar mixtures which are frequently used in the silicate and glass industries.

INTRODUCTION

Most of the literature data on the ${\rm SiO}_2$ -dolomite system refer to the preparation of specific calcium magnesium silicates. The mechanisms of the processes occurring in the system under the influence of heat, and the composition of the formed phases and melts have not been elucidated. The information on these systems is based essentially on a study of heat-treated samples cooled to room temperature (1). The most detailed thermoanalytical description of the ${\rm SiO}_2$ -dolomite mixture has been furnished by Wilburn et.al. (2). These authors were unable to identify some of the peaks above 1000 $^{\rm O}$ C but some other peaks were assumed to be originated from melt formation and due to the appearance of wollastonite.

In the present research the varied thermoanalytical tests at 25–1500 ^OC were complemented mainly by high temperature X-ray diffraction measurements in order to indentify the type of transformations and the new crystalline phases appearing at temperatures corresponding to the DTA peaks.

Thermal Analysis Highlights, 9th ICTA, Jerusalem, Israel, 21-25 August 1988.

0040-6031/89/\$03.50 © 1989 Elsevier Science Publishers B.V.

EXPERIMENTAL

The thermoanalytical investigations were carried out on a Mettler-type instrument, in an air flow. The rate of heating was 6 ^OC/minute and a sintered Al₂O₃ crucible was used. The high temperature X-ray diffraction was carried out with a JEOL JDX type apparatus also at heating rate of 6 ^OC/min.

The samples used in this study were: SiO₂ p.a., with a grain size of 71 _/um, and natural dolomite. The average oxide composition of the dolomite was: CaO 30.74 %, MgO 21.14 %, ignition loss 47.01 %.

RESULTS and DISCUSSION

Table 1 presents the results of the thermoanalysis. The DTA plots are shown in Figure 1. The results of XRD-measurements on the same samples at 25-1500 $^{\rm O}$ C are given in Table 2. The table shows the temperature ranges in which the XRD-test indicated the appearance of a new phase or the disappearance of an existing phase in the sample. The crystalline phases of the mixtures in various ratios are compared in the plots taken at 1300 $^{\rm O}$ C shown in Figure 2.

The first transformation recorded in the SiO_2 -dolomite system is the alpha-beta transition of quartz (see the DTA plot with a peak temperature of 565 °C). The range of temperature of this transformation does not depend on the $\text{SiO}_2/\text{dolomite}$ ratio of the mixture. The measured heat content values (Δ H) are scattered partly due to their low values; the average is 13.0 ± 4.0 Joule/g of quartz. (The literature gives a value of 12.1 J/g).

The processes of decarbonization start at around 570 $^{\circ}$ C and terminate at 800-860 $^{\circ}$ C (see DTA data and the XRD-data of the appearance of CaO). The DTG and DTA data readily indicate the lack of influence of the mixture ratio on the decomposition of the MgCO₃ content of the dolomite although it accelerates the decomposition of the CaCO₃ content. In the case of mixtures the average value is 1657 Joules/g dolomite. The scatter around the average value is \pm 5 %; this proves the fact, also supported by X-ray measurements, that aside from decarbonization no other process may be expected below 1000 $^{\circ}$ C.

474

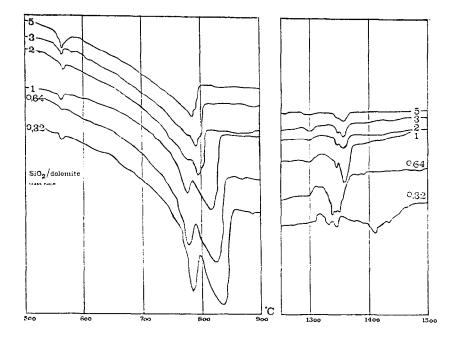
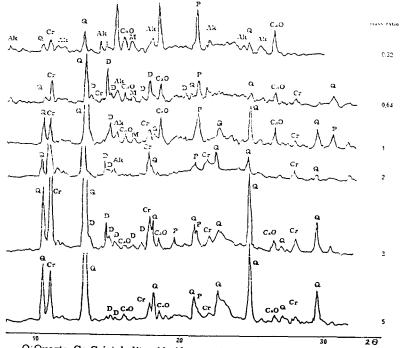



Fig.1. DTA curves of mixtures with different mass ratio AR

Q:Quartz, Cr Cristobalite, Ak:Akermanite, M: Merwinite, D: Diopside Fig.2. X-ray diffraction pattern of the crystalline phases at 1300C

Thermoanalytical investigations of ${\rm Si}0_2/{\rm dolomite}$ mixtures at different ratios TABLE 1

Mass (mol)		ц С	прег	atu	ге г	rang	ი ი	ofDl	TA-p	e a k s		-	Temp.	Temp.rang. DTG-p.	DTG-p.
ratio of	י- א	<i>B</i> Quar	<i>B</i> Quartz trans.	Пs.	De	Decarbonization	iizatic	Ę	۹.	Processes	> 1000	ەر ر	Decar	Decarbonization	ition
SiO ₂ /dola- mite	Init. (⁰ C)	мах. (0 ^С)	Final (°C)	(6/C)	Init. (⁰ C)	мах. (°С)	Final (⁰ C)	д н (3/g) (Init. (⁰ C)	Max. (⁰ C)	Final (⁰ C)	(б/с) Н р	$[100] {100} {100$	Max. (⁰ C)	Final (⁰ C)
Dolomite	1	I	t	I	640	776 838	860	1663	1364 1420	1368 1442	1375 1446	12,2 35,6	265	777 831	862
0,32 (1,0)	561	565	573	3,8	645	703 833	853	1231 (1632*)	1296	1310 ex	1329	-40,0	565	784 823	864
									1330	1335 1346	1353	37,0			
									1353	1410 1436	1461	271,4			
0,64 (2,0)	556	565	575	5,6	639	779 826	856	1051 (1736*)	1302	1311 ex 1322	1328	-40,3	617	779 817	854
									1320	1340 1351	1370	163,0			
1,0 (3,1)	554	565	575	7,5	631	779 816	843	844*5 (1609*)	1281	1303	1312	23,8	521	779 811	848
									1328	1349 1359	1373	158,7			
2,0 (6,3)	552	565	575	7,6	638	775 798	816	525 7 (1577 [*])	1270	1302	1310	17,8	573	774 795	823
									1328	1347 1358	1370	74,9			
3,0 (9,4)	556	265	573	6,7	609	775 793	812	419 ₉ (1679 ⁴)	1284	1300	1314	14,0	528	752 775 005	815
									1329	1347 1358	1370	53,1		021	
5,0 (15.7)	556	566	575	11,0	614	780	197	$\binom{271}{(1626*)}$ 1283	1283	1302	1314	9,3	571	768	809
									1335	1356	1372	27,4			

*: J/dolomite gramm

TABLE 2

High temperature X-ray diffraction measurements of ${
m Si0}_2/{
m dolomite}$ mixtures at different ratios

	Disapp. of Quartz		i	1330-1340	1320-1340	1370-1400	1420-1450	≈ 1500	> 1500	
(. 0 ₀)	Akermanite	Disapp.	J	1410-1440	1310-1340	1310-1340	1360-1390	ł	ł	
changes (Akerr	App.	I	1130-1140	1120-1140	1170-1200	1210-1220	ł	ł	
phase cha	ide	Disapp.	ł	1310-1340	1310-1340	1310-1350	1360-1390	≈1500	1390-1440	
s of	Diopside	Арр.	t	1120-1140	1120-1140	1060-1090	1110-1140	1110-1140	1170-1200	
ure range	O	Disapp.	> 1000	> 1500	1310-1340	1310-1350	1360-1390	≈1500	1410-1450	
Temperatur	06M	App.	580-600	620-640	620-640	620-650	620-650	660-700	710-750	
Τe	CaO	Disapp.	V 1000	1330-1360	1310-1340	1310-1350	1300-1340	1310-1340	≈1300	
		App.	570-590	570-590	570-590	610-620	600-620	600-620	600-630	
	Disapp.of dolomite		660-680	650-670	660-680	660-680	630-650	630-640	610-620	
Mass (mol)	Mass (mol) ratio of Si0/dolo- mfte			0,3* (1,0)	0,6 * (2,0)	1,0* (3,1)	2,0 (6,3)	3,0 (9,4)	5,0 (15,7)	

Dolomite: CaCO₃, MgcO₃; Akermanite: 2CaO.MgO.2SiO₂; Diopside: CaO.MgD.2SiO₂ *****: Appearance of merwinite: $3Ca0.Mg0.2Si0_2(at$ the lower detection limit) At temperatures above 1000 ^oC various processes of silicate formation are taking place, sintering and melt formations occur. For the given composition only a mixed calcium-magnesium silicate can be detected.

The most characteristic double endothermic peak of the DTA curve above 1000 $^{\circ}$ C, occurring at about 1350 $^{\circ}$ C, can definitely be assigned to melt formation. According to XRD measurements most crystalline phases (except SiO₂) vanish from the system at this point. According to the investigation of the melt phase content of the SiO₂/dolomite mixture heat-treated at 1350 $^{\circ}$ C the molar ratio of 2:1 mixture was found to melt the most readily; in parallel with decreasing dolomite content the melt formation is also reduced. This observation is also supported by the reduction in intensity of the DTA peaks around 1350 $^{\circ}$ C.

CONCLUSIONS

The quantitative composition of the SiO_2 -dolomite mixture under the given experimental conditions has no effect on the temperature range of polymorphic transition (alpha-beta-quartz transition at about 560 $^{\rm O}$ C), on the formation of calcium magnesium silicates and the melt phase (1100-1200 $^{\rm O}$ C and 1300-1350 $^{\rm O}$ C, respectively) and on the starting temperature of the decarbonization processes (570-620 $^{\rm O}$ C).

The increased amount of SiO_2 , however, accelerates the decarbonization of the CaCO_3 content of dolomite. The mixture ratio definitely determines the predominating calcium magnesium silicate phase (akermanite or diopside) and also the extent of formation of the melt phase.

REFERENCES

- Gmelins Handbuch der Anorganischen Chemie, Calcium 28, Verlag Chemie, GMBH Weinheim (1961) pp. 1370-90
- F.W. Wilburn, S.A. Met-Calfe, R.S. Warburton: Glass Technol.
 6. (1965) pp. 107-118
- I. Barin, O. Knacke: Thermochemical properties of inorganic substances Springer-Verlag (1973) 182/689.

478