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ABSTRACT 

Limitations and applications of four popular expressions for predicting multicomponent 
thermodynamic properties from measured binary data are re-examined using volumetric data 
for 37 ternary systems. All four methods provide very reasonable estimates of the ternary 
excess volumes. For computerized calculations and mathematical representation of experi- 
mental data, the BAB, Kohler and Jacob-Fitzner equations are preferred over the Redlich- 
Kister equation. The mathematical forms of the BAB, Kohler and Jacob-Fitzner equation are 
both symmetrical and independent of the marmer in which the properties of the three 
contributing binary systems are reported. 

INTRODUCTION 

For many years the chemical industry has recognized the importance of 
thermodynamic and physical properties in design calculations involving 
chemical separations, fluid flow and heat transfer. Development of flow 
calorimeters, continuous dilution dilatometers and vibrating-tube densime- 
ters has enabled the experimental determination of excess enthalpies, heat 
capacities and volumes of non-electrolyte liquid mixtures with convenience 
and accuracy. Utilization of continuous dilution methods, combined with 
chromatographic head-space sampling techniques, has reduced the experi- 
mental time needed for the determination of excess Gibbs free energies and 
activity coefficients through conventional vapor pressure measurements. But 
even with today’s modern instrumentation, experimental measurements of 
thermodynamic properties become progressively more difficult and time- 
consuming with each additional component beyond binary mixtures. 
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In the chemical literature, properties for binary mixtures are relatively 
abundant, properties for ternary systems are scarce and properties for 
higher-order multicomponent systems are virtually non-existent. To address 
this problem, researchers have turned to predictive methods as a way to 
generate desired quantities. Several years ago, Bertrand, Acree and Burch- 
field [1,2] developed a general equation for the mathematical representation 
and estimation of the thermodynamic and extra-thermodynamic properties 
of multicomponent systems based only on the properties of the contributing 
binary systems, independent of the manner in which these data are repre- 
sented. This equation, referred to as the BAB equation, takes the general 
predictive form 

in which Z represents any extensive thermodynamic or extra-thermody- 
namic property and (AzfJ)* is the excess property of the ij binary system 
at a mole fraction composition (c, q) such that 

(2) 

and the molar ratio is the same as in the multicomponent system. Weighted 
mole fraction compositions, fi, are calculated for a ternary system as 

The weighting factors Pi provde a rough measure of the skew of the binary 
excess mixing property from a symmetric curve with an extremum at the 
equirnolar composition. 

Like many of the numerous predictive expressions suggested in the past, 
the predictive accuracy of the BAB equation was tested using available 
experimental data. At the time the BAB equation first appeared in 1981 [3], 
published multicomponent data were scarce. The BAB predictions were 
compared to excess enthalpies of 33 ternary and 2 quatemary systems, 
excess volumes of 16 ternary systems, and the excess Gibbs free energies of 8 
ternary systems at several temperatures. During the past seven years, data 
for a large number of ternary systems have been measured and reported in 
the chemical literature. As additional experimental data becomes available, 
the limitations and applications of the different predictive methods should 
be re-examined. Recently Pando et al. [4] discussed the limitations of various 
methods for predicting excess enthalpies of 42 ternary systems. To add to 
this comparison, we here re-examine the predictive abilities of the BAB [1,2], 
Redlich-Kister [5], Kohler [6] and Jacob-Fitzner [7] equations using volu- 
metric data for 37 ternary systems. 
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CALCULATIONAL METHODS AND PREDICTIVE EXPRESSIONS 

A summarized comparison between predicted and experimental excess 
volumes is presented in Table 1. The number of individual data points for a 
given system ranges from a minimum of 8 Ap’s for the methyl ethyl 
ketone + alcohol + hydrocarbon mixtures to a maximum of 42 Ap’s for 
the ternary n-heptane + n-octane + cyclohexane system. The binary proper- 
ties needed for the predictions were either determined as part of the ternary 
studies or referenced the author’s earlier papers. Computations were per- 
formed on an IBM personal computer. Input parameters included ternary 
mole fraction compositions and coefficients for generating binary AF ‘s. 
Generally, binary volumetric data were parametrized 
ture in terms of the Redlich-Kister equation 

r 

w=o 

and the various ( A,)ij parameters were inputted. Subroutines could be 
easily added to accommodate binary coefficients for Legendre polynomials 

in the chemical litera- 

[8], the Wilson equation [9], the UNIQUAC model [lo], the NRTL equation 
[ll] and/or other expressions which might be used to mathematically 
represent excess enthalpies and Gibbs free energies. As noted previously, the 
BAB equation (as well as the other three predictive expressions) predicts 
multicomponent thermodynamic and extra-thermodynamic properties. 

BAB weighting factors were evaluated in a relative sense (Ii/Ii) from the 
measured binary data. To insure that these ratios obey 

(5) 
we first computed a raw weighting factor ratio ( r~w/I’J!aw) from binary 
excess molar volumes at mole fractions Xi = 0.3333 and Xi = 0.6666 

(6) 

as recommended by Bertrand, Acree and Burchfield [l]. In eqn. (6) the 
binary properties (A%)& and ( AvF):/3 refer to compositions Xi = 0.3333 
and Xi = 0.6666, respectively. The three raw weighting factor ratios are then 
combined and normalized to an average of approximately 100 by 

r,=3oo/[(r,""/r,"")+(r,""/r,"")+(r,""/r,"")] 0) 

r,=3oo/[(r~w/r,'")+(r~w/r;"")+(r,""/r,'">] (8) 

and 

(9) 
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These computations become meaningless if a ratio of raw weighting factors 
calculated from eqn. (6) has a negative value (or an abnormally high or low 
value) as can happen if the binary mixing property shows a point of 
inflection when plotted versus mole fraction. This is uncommon, however, 
and if the ratios of raw weighting factors were less than l/10 or greater than 
10 times the ratio of molar volumes, we have simply used pure component 
molar volumes for weighting factors of all components. Only for methyl 
ethyl ketone + l-hexanol + n-heptane, methyl ethyl ketone + 1-hexanol + n- 
octane and methyl ethyl ketone + l-pentanol + n-heptane systems was it 
necessary to approximate weighting factors with molar volumes. 

Also included in the summarized comparison are calculated values based 
on three other very popular predictive expressions. The Redlich-Kister 
equation [5] predicts ternary excess volumes using 

r S 
Ap=X,& c (A,)& -Xdw+x,x, c (4&(X,-x,>” 

w=o w=o 

+x*x, c (4)*,(x*-w (10) 
w=o 

The ( A,)ij parameters were determined through a least-squares analysis of 
binary data according to the appropriate binary reduction of eqn. (10). The 
Redlich-Kister method requires that the binary excess volumes be mathe- 
matically represented in terms of eqn. (4) as the ( A,)ij values are used as 
coefficients in the predictive ternary expression. 

The Kohler equation [6] predicts the ternary excess volumes from 

The measured binary properties (AeF)* at binary compositions (c, XT) 
are such that e = 1 - q = X,/( Xi + Xj). Inspection of the BAB and 
Kohler equations reveals that the two predictive methods are identical when 
the BAB weighting factors of the three components are equal. 

The Jacob-Fitzner equation [7] also estimates ternary properties using 

&X2(@)* X1X3( AC;)* 

Ai+ = (Xi + x,/2)( x2 + x,/2) + (Xi + x*/2)( x3 + x2/2) 

x*x,(e3* 

+ (x2 + x1/2)( x3 + x,/2) 
02) 

and the actual numerical volumetric data (Av,F)*. The binary compositions 
(e, q) are defined such that fl- $ = Xi - Xj. Equations (11) and (12) 
are symmetrical and independent of the manner in which the binary 
properties are reported. Users of the Kohler and Jacob-Fitzner equations 
need not specify a particular component, and do not have to reparameterize 
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binary data in accordance with a specific mathematical form as might be the 
case using the Redlich-Kister equation. 

RESULTS AND DISCUSSION 

A summarized comparison of the predictive abilities of the BAB, Red- 
lich-Kister, Kohler and Jacob-Fitzner equations is presented in Table 1. 
Results of our many calculations are given as the standard deviation 
between predicted and observed values, u, and the absolute value of the 
maximum deviation for a single data point, 1 d,, I. Careful examination of 
Table 1 reveals that there is no a priori way of guessing which predictive 
method will provide the “best” predictions for a given ternary system. 

Also indicated in Table 1 is the fact that the Redlich-Kister predictions 
are numerically identical to those of the Jacob-Fitzner equation. This will 
be the case anytime that binary data for all three sub-binaries are mathe- 
matically represented via the Redlich-Kister equation. To prove this, one 
recalls that (AT)* values used in the Jacob-Fitzner equation are calcu- 
lated at binary mole fractions such that e - q = Xi - Xi. For the binary 
mixture containing components 1 and 2, the ternary and sub-binary mole 
fractions are related as follows 

x;*=X,+X,/2 and z=X,+X,/2 

and the corresponding binary ( Avf$)* is given by 

03) 

Similar Redlich-Kister expressions exist 

(A%)* = (XI + X,/2)(X, +x,/2) i MVMXI -X3>” 
w=o 

05) 

@Et)* = (XZ + X,/2)(X3 + X,/2) IL (~W),,(X, - X3)” 06) 
W==O 

for the remaining two sub-binary systems. By combining eqns. (12) and 
(14)-(16) it is fairly easy to show that the Redlich-Kister and Jacob-Fitzner 
predictions are mathematically identical under this set of conditions. 

During the course of these predictions, we did explore the possibility of 
using each equation as the point-of-departure in the mathematical represen- 
tation of multi-component properties. The difference between predicted and 
experimentally observed excess volumes were expressed as 

(Av”“)” - (Ap)prti = c X&XkQijk (17) 
i,i,k 
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with Q-functions of varying complexity. We have found that ternary systems 
with no strongly polar components can be adequately described with a 
single constant, Q,, = A,,,. In mixtures of non-polar and strongly polar 
substances, i.e. hydr~bons and alcohols, two parameters are often re- 
quired to represent the ternary data 

Q123 = h23 + h23 xl (18) 

in which component 1 represents the “odd” component, either the polar 
component mixed with two non-polar components or the non-polar compo- 
nent mixed with two polar components. The general expression for para- 
meterization might take the form 

Q 123 =&23 + B123@l - x2> + B132(Xl - x3) + B231(X2 - x3> 

+c123(~-x2)2+c132(~-x3)2+c231(x2-x3~2+*~~ 09 

with the number of parameters needed determined by the complexity of the 
ternary system and the experimental uncertainty of the measured data. 
Although any of the three predictive equations can serve as the point-of-de- 
parture for this mathematical representation, we did find it easier to para- 
meter&e the deviations from the BAB equation. Also the BAB equation (as 
well as the Kohler and Jacob-Fitzner equations) gave greater freedom in 
describing the binary data as its predictive form is independent of the 
mmer in which the properties of the three sub-binaries are reported. 

Readers are reminded that prediction of multicomponent properties and 
mathematical representation of experimental data will become increasingly 
more ~port~t with computerized design calculations and data base stor- 
age. The BAB, Kohler and Jacob-Fitzner equations are ideally suited for 
today’s computerized calculations. General applicability to thermodynamic 
excess properties for many systems of varying complexity makes all three 
equations very useful for a broad range of design problems. The ability to 
utilize any description of the properties of the contributing binary systems is 
an import~t feature for computerized calculations as subroutines can be 
added to the main program to handle each new binary equation which might 
be developed in future years. 
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