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ABSTRACT 

This work presents the infhumce of external and internal noises on the accuracy of the 
determination of thermokinetics as the function of the dynamic parameters of the calorimet- 
ric system at a given noise-to-signal ratio. 

INTRODUCTION 

The important problem in calorimetry is the determination of thermo- 
kinetics, that is the function describing the changes of heat power in time, 
connected with the examined heat process on the basis of the measurement 
of the calorimetric signal and the assumed model of the calorimetric system. 
Each measurement of the calorimetric signal is encumbered with a certain 
error connected with the external noise or the precision of the measurement 
itself. 

This work discusses the choice of the sampling period at the given 
noise-to-signal ratio so as to eliminate the influence of noise on the quality 
of thermokinetic determinations. The dependence of the optimal sampling 
period on the order of the calorimetric system is demonstrated. The consid- 
erations were carried out on the basis of the multi-body theory. 

FUNDAMENTAL EQUATIONS 

Considering the calorimetric system as the system of bodies, which is 
placed in the constant temperature environment (shield), the general equa- 
tion of heat balance has the form [l] 

Cj dOi + GojO, dt+ ; Gjj[O,(t) - Oi(t)] dt = dQj(t) (1) 
i=l 

j=1,2 ,*--, N; i#j 
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where N is the number of distinguished bodies, Cj is the heat capacity of 
body j, GOi is the heat loss coefficient between body j and the environment, 
Gjj is the heat loss coefficient between body j and body i, ej(t) is the 
function describing the changes of temperature of body j in time with 
respect to the environment temperature and dQj(t) is the amount of heat 
generated in body j in the interval time dt. 

The differential equation (1) normalized in the dimension of temperature 
is called the dynamic equation of the calorimetric system and has the form 

PI 

T, d@jW 
Jdt + oj(t) = 5 k;j@,(t) +pjfi(t) 

i=l 

j=l,2 ,***, N; i#j 

where q is the time constant of body j, kij is the interaction coefficient 
between body j and body i, fi(t) is the forcing function whose course is 
proportional to the heat power generated in body j and pi is a dimension- 
less coefficient, which is chosen so that the increment of temperature Oi( t) 
in the steady state (stationary state of exchange heat) is equal to the 
increment of the forcing function fi( t). 

TRANSMITTANCE 

The system of differential equations (2) can be written in matrix form as 
follows 

T&t) +Ae(t) =F’f(t) (3) 

where T is the diagonal matrix whose elements are the time constants q., P 
is the diagonal matrix whose elements are the coefficients pj, A is the matrix 
whose elements are ajj = 1 and aij = - kij for i #j, 8 is the state vector, 
0= = [O,, O,, . . . , O,], and f is the forcing vector, f ’ = [fi, fi, . . . , fN]. 

Applying the Laplace transformation to eqn. (3) at zero initial conditions, 
we obtain 

(ST + A)@(s) = Pf(s) (4) 

where e(s) is the Laplace transform of the state vector e(t) and f(s) is the 
Laplace transform of the forcing vector f(t). The solution of eqn. (4) is 

e(r) = (ST + A)%(S) (5) 

or 

9(s) = H(s)f(s) (6) 

where 

H(s) = (ST + A)-lP (7) 
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is the transfer matrix and its elements are the tr~s~tt~ces Hij(s), which 
have the form 

H.,I 

ri 
) _ b-~)‘*-b’-AljilPl 

s - 
IsT+AI 

where 1sT-kAl isthedeterminantofthematrixsT+A, IsT+AIjjisthe 
corresponding minor of the matrix ST -i- A and I P I is the determinant of 
the matrix P. These dete~n~ts, after development into a power series 
with respect to S, give polynomials of Nth- and Mth-degree, f M < N), 
respectively 

IsT+ Al = 5 a,sn=F(s) (9) 
tt=O 

Thus, the transmittance (8) can be written in the form 

or developing the nominator and the denominator of the transmittance (11) 
into first-degree factors 

H,jc~)=s)j~(l+sL,j,k) fifl+sM,) 

I 
03 

k=I ?I=1 

where Sjj = bij,/ao is the static gain, - l/L,,, k is the root of the no~nator 
of transmittance (the zero of the transmittance) and - l/Mn is the root of 
the denominator of transmittance (the pole of the transmittance). 

As can readily be observed, the poles of transmittance depend only on the 
parameters of the calorimetric system, but the zeros of the tr~s~tt~ce 
depend on the mutual localization of the heat source and the temperature 
sensor. 

AMPLIWDE CHARACTERISTICS 

Putting s =j~ in relationship (X2), we obtain the spectrum tr~s~tt~ce 
Hi j( jw) in the frequency domain o 

H&o) = &sijkfiI (1 +jG+J 
/ 

fi (1 +jwMn) (13) 
n=l 

The amplitude characteristics AJo) are described by the function 

A&) =sji fi (1 + &?L&J2/ fi (1 -I- W*A4;)1’2 04) 
k-l n=l 



For sufficiently large values of frequency w, the function Aij( o) can be 
approximated by the expession 

05) 

where m = N - M. Taking logarithms of both sides of relationship (15) 

Y ZC -mx+p 06) 
where 

Y-log Aij, X=10% 0, p=lOg ( &f, SjjIl Lij,& 
ids) 

(17) 

As a result of relationship (16), the plot of the amplitude in co-ordinates 
(log w, log A) asymptotically approaches the line having a direction coeffi- 
cient, -m, equal to the difference between the degree of the nominator and 
the degree of the deno~ator of the trans~tt~ce. Thus, the ~ymptotical 
plot enables the evaluation of the difference between the number of zeros 
and the number of poles the transmittance. 

OPTIMAL SAMPLING PERIOD 

As the criterion of choosing 
that 

Aij(#) =10-q 

the optimal sampling period, it is assumed 

0% 

where 10-q denotes the noise-to-signal ratio, and 4 corresponds to the 
number of the certain digits in the measurement of the calorimetric signal. 
In order to estimate the values of the sampling period h instead of Aij( o), 
the approximate values 

Xj( 0) = 10-q 09) 

are assumed in eqn. (15). From relationships (15) and (19) 

t.Psij fi Lij,& I fi M, = lO-q 
k=l ?Z=l 

(20) 

Applying relations~p (ZO), the formula of the optimal sampling period 
h = l/o has the form 

Thus the values of the constants Lji,, and M, must be bigger than the 
sampling period with respect to the stability of the numerical solution. In 
the particular case when the number of the certain digits in the calorimetric 



measurement is equal to the difference between the number of poles and the 
number of zeros of the transmittance (q = m), the formula of the optimal 
sampling period takes the form 

DISCUSSION 

If the calorimetric system is the first-order inertial object with time 
constant M, which is described by the following equation 

and assuming, that the input signal f(t) has the shape of the sinusoidal 
vibration of amplitude Ai, and frequency v (v = 272/T, T is the vibration 
period) 

f(t) =Ah sin(H) (24) 

then the ratio of the amplitude A,, of the output signal and the amplitude 
A, of the input signal is 

A,JA, = (1 + v2M2)y2 
From relations~p (23, it follows that the influence of external noise on 

the measured signal becomes smaller and smaller as the time constant M or 
the frequency v becomes bigger. Thus, this influence decreases due to the 
number of time constants (poles). On the other hand, in the case of the 
determination of the input signal, the situation becomes completely differ- 
ent. Each time constant of the system increases the influence of the noise 
connected with the measured signal on the quality of tbe determination of 
the input signal. 

The inverse situation occurs when the transmittance has zeros. The zeros 
increase the influence of the external noise on the accuracy of the calorimet- 
ric m~surem~t. On the other hand, they reduce the influence of the 
internal noise on the accuracy of the determination of the input signal. 

Consider, for example, a calorimetric system of time constant A4 = 100 s 
and sampling period h = 1 s. The reconstruction of an input signal f(t), 

when the measured calorimetric signal is noise of normal distribution and 
amplitude A,, = 0.05, is shown in Fig. 1. This corresponds to the change in 
base line. As can be seen from this figure, a certain band around the average 
value of zero is obtained instead of the input signal f(t). 

Figure 2 shows the reconstruction of a constant input signal f(t) = 100 
when the measured calorimetric signal O(t) is the response of the calorimet- 



Fig. 1. Plots of the output signal 0 [continuous line), the known null input signal f 
(continuous line) and the reconstructed input signal x (dots), 

0 250 t [s] 

Fig. 2. Plots of the output signal 8 (continuous line), the known constant input signal f 
~~on~uous line) and the reconstructed input signal x (dots). 

ric system to this effect, modulated by noise of normal distribution of 
amplitude A, = 0.05. 

The reconstruction of an input signal f(t) 

f( t ) = 400 [exp( - t/40) - exp( - t/20)] 

when the measured calorimetric signal O(t) is the response of the calorimet- 
ric system to this effect, modulated by noise of normal distribution of 
amplitude A, = 0.05, is given in Fig. 3. 

As can be seen in these figures, a band around the input signal f(t) is 
obtained instead of the signal. A similar phenomenon was observed in the 

Fig. 3. Plots of the output signal 8 (continuous line), the known changing input signal f 
(continuous line) and the reconstructed input signal x (dots). 
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calorimetric investigations of calcium phosphate precipitation in relation to 
solution composition and temperature [2]. The problem of kinetic limits in 
the determination of thermokinetics was discussed in a previous paper [3]. 
The conditions of uniqueness for the determination of thermokinetics were 
reported in other papers [4,5]. 

CONCLUSIONS 

As a result of these considerations, at a given precision of the measure- 
ment, it is possible to determine the input signal with a certain accuracy in 
spite of the optimal sampling period used. In order to increase the accuracy 
of the determination of the input signal, it is necessary to increase the 
precision of the measurement. 

As a result of these considerations, there is a relationship between the 
number of determined parameters of the calorimetric system and the quality 
of the measured signal. When the signal-to-noise ratio is low, it is not 
reasonable to take into account a great number of dynamic parameters. 
While choosing a dynamic model of a given calorimetric system and 
determining its parameters by different methods, it is necessary to evaluate 
the adequacy of the model when describing the real system. 

All calorimetric systems have similar relative frequency characteristics. 
This permits the estimation of the dynamic possibilities of an apparatus and 
the measurements for a given value of the signal-to-noise ratio. It is 
necessary to choose a sampling period which would eliminate the influence 
of noise on the accuracy of the determination of thermokinetics as much as 
possible. 
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