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ABSTRACT

Using the available experimental gas compressibility data, the predictive accuracy of the
Benedict—Webb-Rubin and Starling equations of state was tested in P—V-T calculations
over a wide range of temperature, pressure and composition for the following binary
mixtures: He-N,, He-Ar, He-CO,, H,-CH,, Ar-CO,, N, -CO,, CH,-CO,, C,H-CO,
and C;Hg-CO,. New interaction parameters, L,, = L, (T, P,x), functionally dependent on
temperature (T'), pressure (P) and composition (x) were introduced. The root mean square
(RMS) percent errors

n 1/2

RMS% error = | 3 (% error)z/n]
=1

where % error = [( Zeacutated — Zexpermental)/ Zexpenmentat ] X 100, calculated over the T-P—x

range investigated for all binary mixtures, showed a degree of superiority for the

Benedict—Webb-Rubin equation over the Starling equation of state.

INTRODUCTION

The eight-constant Benedict—Webb-Rubin (BWR) [1-6] equation and its
modification, the eleven-constant Starling [7-10] equation of state have
proved to be highly successful in providing a good description of the
thermodynamic behaviour of real fluids for both vapour and liquid phases
[11-19]. Lielmezs and coworkers {12] have shown that for pure gas com-
pressibility factor calculations the generalized Starling equation gives good
results for the following compounds: CH,, C,H,, C;H,, CO,, N,, Ar, H,
and He. They also noted that the BWR equation gives improved results if a
reliable constant set is available for each compound [12].

This study examines the use of these two equations of state and the
mixture combination rule* in predicting the compressibility factors for

* A general introduction to various forms of these mixing rules is found in the texts of Reid
et al. [20,21] and Prausnitz and Chueh [22].
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TABLE 1
Experimental data used *
System Refe- No.of Pressure Temper- Composi- Compres- Average

rence data range, ature tion range, sibility compres-

points P (atm) range, x, 1st factor sibility
T (K) component range Zyv=
Z (1/mX,Z,

He-N, 24 45 13-530 183-273 0.16-0.75 0.60-1.71 1.116
He-Ar 25 32 80-320 303-773 0.12-1.00 0.99-1.11 1.040
He-CO, 29 30 180-560 313-353 0.28-0.78 0.74-1.24 1.145

31 19 1- 70 293 0.06-0.90 0.70-1.02 0.941

32 39 16-440 340-700 0.12-095 0.62-1.06 0.991

33 53 1-250 303-343 0.15-0.80 0.69-1.08 0.953
H,-CH, 23 71 13-340 200-283 0.20-0.78 0.73-1.22 0.993
Ar-CO, 29 29 203-580 313-353 0.29-0.80 0.54-1.19 0.953

30 20 1- 25 203-303 0.09-0.67 0.88-1.00 0.962
N,-CO, 29 50 88-580 313-353 0.32-0.77 0.65-1.36 0.978
CH,-CO, 26 38 13-340 310-444 020-0.67 0.80-1.01 0.865
C,H,-CO, 27 66 6-620 277-511 0.21-0.80 0.31-1.64 0.773
C;Hz-CO, 28 76 13-680 311-478 0.18-0.83  0.32-1.43 0.800

? Property data for pure compounds taken from McFee et al. [12] and Reid et al. [20,21].

several non-hydrocarbon and hydrocarbon—non-hydrocarbon binary mix-
tures: He-CO,, He-N,, He-Ar, H,—~CH,, Ar-CO,, N,-CO,, CH,-CO,,
C,H,-CO, and C;H - CO,. Experimental data were gathered from a num-
ber of sources [23-33] for the gas phase compressibilities and for near to the
critical state condition. The BWR constants for individual pure components
taken from McFee et al. [12] were supplemented by a set of new values for
He (see Tables 1 and 2). The applicability of the BWR equation coefficients
(eqns. (3)-(11)) for binary mixture calculations, was tested in three ways:

TABLE 2

Recommended binary mixture Benedict-Webb-Rubin constants * (eqn. (3)) for He
A 0.000231886

Ao 0.0524262

B 0.00056115

B, 0.0150686

C —0.000988

Go —1.0360223

a 0.00000472

Y 0.00092675

* Pure component critically evaluated BWR constant values for He given by McFee et al.
f12].
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using the original BWR mixing rules (eqns. (4)—(11)) which do not contain
an empirical binary interaction parameter L, , i.e. L;; is assumed to be 1.0;
using mixing rules suggested by Bishnoi and Robinson (eqns. (12)—(15))
which contain a fixed binary interaction parameter L,; (L,;=1—k;) for
coefficients 4,, C;, A and C (Tables 3 and 5) and for coefficients B, and B
(eqns. (16) and (17); Tables 3 and 5); and by introducing in the original
BWR mixing rules (eqns. (4)—(11)), in place of the fixed interaction parame-
ter L, a new binary interaction parameter function L,;(7,P,x) such that
L;;=e+ fx+ gP+ hT (eqn. (41), Tables 4 and 5).

The results of these tests were evaluated by comparing the compressibility
factors calculated using the state equations with the experimental com-
pressibility factor data over the entire data set by means of the root mean
square (RMS) percent error

n % 2 1/2
RMS% error = [Z (—ego—r)— (1)

i=1
where for each data point “i”

Zc culated ~ Zex rimen

% error = | —euaed perimental | % 100 (2)

Z

experimental

The optimum or “best” set of BWR coefficients and/or L,, values was
that set of coefficients and/or L,, values which yields the lowest RMS%
error over the same set of experimental data. Table 1 presents the summary
of experimental data used. It also contains the parameter Z,*. A low Z,v
value indicates the presence of critical state data points in the given data set
which are more difficult to curve-fit. Table 2 presents a new set of BWR
constants for He to be used for gaseous mixtures ** containing He as a
component. Table 3 sums up the fixed interaction parameter L,; optimum
values as calculated by several methods while Table 4 presents the calculated
values of the dimensionless coefficients e, f, g and & of the interaction
parameter function, L, ;(T,P,x) =e + fx + gP + hT, and shows the measure
of the degree of fit for this equation. Table 5 compares the RMS% errors
(eqns. (1) and (2)) in compressibility factor Z values calculated for binary
mixtures by means of several methods. Table 6 points out the differences in
fixed interaction parameter L,; values as obtained by several authors.
Figures 1-4 show the fixed interaction parameter L;; dependence on the
state parameters 7,P and x for three binary systems, thus indicating the
need for a state-dependent interaction parameter function L, (T, P,x) such

* Z,y is defined as Z,y = (1/n)L]_, Z,, where Z, is the ith compressibility factor.
** Preliminary calculations, this work, indicated that the BWR coefficients for pure He [12]
did not sufficiently describe the curve-fit of binary mixtures containing He as a component.
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TABLE 6
Comparison of interaction parameter L,, values obtained by several authors
System Method
Starling eqn. (eqns. (18)-(40)) BWR eqn. (eqns. (3)-(17))
This work Starling This work Chueh and
(Tables 3 and 4) and Han (Tables 3 and 4) Prausnitz
(1-6] 22}
CH,-CO, 0.75 0.95 0.80 0.95
C,H,-CO, 0.96 0.952 0.96 0.92
C,H;-CO, 0.95 0.955 0.95 0.89
N,-CO, 1.17 1.00 1.15 -
H,-CO,? 1.30 0.99 0.90 0.97

 Calculated including quantum effect correction [12).

as eqn. (41), Tables 3-5. In this, as in the previous work [12], the multiprop-
erty linear regression method (BWR equation of state) proved to be overall
more accurate than the generalized Starling equation even if the multiprop-
erty regression approach is computer time consuming and not always in

Y error in 2

t
-

O = N W bW W W
v Y

Lij =10

Lijw215

— _Li]':‘lﬂ

® He - COz

* CaHg = COy

I I i i 1 4 £

1 2 3 4 5 6 ?

Pressure x 10 [atm)

Fig. 1. Change of percentage-error in Z as a function of pressure, P, keeping interaction
parameter L,, fixed for: C;H¢—CO, system at x =0.1777; 7=344.26 K and 4,=f(L,,)
only, and He~CO, system at x = 0.5144; T=313.05 K and 4, = f(L,))
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% error in Z

Fig. 2. Change of percentage error in Z as a function of the interaction parameter L,, for
C,H¢-CO, system with A,=f(L,,) at the following conditions: B a x=0.1777,
P =85.03 atm, T= 31093 K, Z=0.3929; ® ® x =0.1532, P =170.07 atm, T = 310.93
K, Z=0467;, 4 4 x=01777, P=40.82 atm, T= 31093 K, Z=0.7951; a A
x=0.1777, P =544.22 atm, T =344.26 K, Z=1.0177.

itself successful (Tables 3-6). Varying the interaction parameter L,; or
introducing the interaction parameter function L,,(T,P,x) reduced errors
for several binary mixtures (Tables 3-6).

Y% error inZ

.4 ‘6 * ,‘8 ‘ 'l..O . 1.‘2 ‘ 1..4 1J6

Lij
Fig. 3. Change in percentage error in Z as a function of interaction parameter L,, for
He-CO, system with 4, = f(L,,) only at fixed temperature T = 313.05 K for the following

conditions: (1) x = 0.2813, P=184.56 atm, Z=0.7450; (2) x=0.5144, P =184.43 atm,
Z =0.9395; 3) x=0.7741, P =522.25 atm, Z =1.2315.
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Fig. 4. Change of percentage error in Z as a function of mole fraction x for N, -CO, system
at fixed temperature 7' =310.93 K and L, = 0.60, and with 4, =f(L,,) for two pressures
P =68.03 atm and P =136.05 atm.

EQUATIONS OF STATE
Benedict—Webb—Rubin (BWR) equation

The BWR equation of state [1-6] is

C 3
P=RTp+ BORT—AO—R;Z p2+(BRT—A)p3+Aap6+%"2—(1+yp2)

+exp(—v0°) (3)

where B,, 4,, Cy, B, A, C, a and y are eight empirical constants [1,2].
The original mixture rules proposed by Benedict et al. [1-6] are

5= L @)
A= [T (40 5)
Co= [ z;xi(co.)‘/z]z (6)
B- [;x,(g,)l/3]3 (7)

A= [zx,.(A,.)wr (8)

i
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- [;x,(Cyﬂr )
- [Ex)7] (10)

- [Ex7] (1)

These mixing rules (eqns. (4)-(11)) were shown to be adequate by the
original investigators [1-6] for many of the hydrocarbon-hydrocarbon sys-
tems. To improve the mixing rule predictive accuracy for non-
hydrocarbon-hydrocarbon systems at low temperatures and possibly at
elevated pressures, researchers [16,17,34-37] have suggested that binary
interaction parameters be introduced into the cross-interaction terms of the
BWR original mixing rules. Thus Bishnoi and Robinson [16,17,34,35], utiliz-
ing the previous work of Stotler and Benedict [36] and Motard and Organick
[37], proposed the following mixing rules involving the interaction parameter
L

iy

Ao, = (40, 40,)" ZLU (12)
Co, = (CoiCoy) L, (13)
4,=(4,4)"L, (14)
c,=(cc)’L} (15)

In this work the effect of the binary interaction parameter L,; on the
original B, term was considered to be (Tables 3 and 5)

By,; = (By;By;) /L, (16)
B, =(BB)"/L, (17)

Starling equation

The Starling [7-10] equation * is an extension of the BWR equation of
state with temperature corrections for C, (additional constants D, and E;)
and A4 (additional constant d)

G D, E\, d\ .
pP= RTp+(B0RT A= 5+ 3 T4lp +(bRT a T)p
d
+a(a+ T)p = (1+YP ) exp(—vp®) (18)

* All the data needed for the evaluation of the Starling equation for pure components are
taken from McFee et al. [12].
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Starling et al. [7-10] expressed the eleven pure component parameters (eqn.
(18)) as the following functions of the component acentric factor w,, the
critical temperature T ; and critical density p,,

P, By = A, + By, (19)

pciA ]

——RTC‘: = A4, + By, (20)

pciCOI

Leiz0 _ 4.+ By, 21
RTS 3 3 ( )

pgryt = A4 + B4wt (22)

Pczibz =As+ Bsw, (23)
2

pcxai

R].‘,:l = A6 + BGwi (24)

Pia,-=A7 + B, (25)
2

pcici

RT’ = Ag + By, (26)

pchOi

——— = Ay + Byw, 27
RT:: 9 9% ( )
2

Pcid: '

—— =A,,+ By 28

RT,; 10 10™%; ( )

Pz Eoi
200 _ 4.+ B 29
RT® 11 11 (29)

The mixing rules proposed by Starling et al. [7-10] are similar to the
BWR rules *, and in effect are a combination of the suggestions of Stotler
and Benedict [36], the 4, term, and of Motard and Organick [37], the C,
term but with the interaction parameter-L,, in the D, and E, terms also, as
these terms modify the C, term.

The mixing rules used in this work are

By =} x,B,, (30)

Ao= 2 Y x,x, A AyL,; (31)
g

Co =2 Lxx, G QLY (32)
i J

* Nishiumi and Saito [38] define mixture behaviour for their fifteen-constant extended BWR
equation by means of mixing rules set solely in terms of state parameters T, p. and w.



Y= Zx v (33)

b=|Y x;b/" (34)

a= Zx,al/
a= Zx o

i

c= {Zx,c}/3}3 (37)
ZZx Dy/*DojLy; (38)

(36)

[
3] (33)
|

d= [Zx,d,l/3] (39)

ZZx, Eo{*Eof*L; (40)

Interaction parameter function L; (T,P,x)

The binary interaction parameter L;;, or as it is often referred to,
(1 —k,,), is generally assumed to be a constant *, characteristic of each
binary system and independent of temperature, pressure and composition
[20-22]. The original BWR mixing rules (eqns. (4)—(11)) involving mixtures
of the same compound family (hydrocarbons—hydrocarbons) neglect the
small same-compound family interactions and can be “normalized” * by the
statement that for those particular mixing conditions, L;, = 1.0. For mix-
tures characterized by interactions between dissimilar compounds, the origi-
nal BWR mixing rules appear to be insufficient (Table 4) so that an
interaction parameter, L;; # 1.0, should be introduced.

Figure 1 illustrates this effect for the two systems C,H,-CO, and
He-CO,. Curves are presented with the mixing term for A, for these
systems modified by including the binary interaction parameter L,; + 1.0
and with the original BWR mixing rules (L,; = 1.0).

Figures 2 and 3 show how changing the L,. ; values affects the calculated
compressibility factor Z for C,H,~CO, and He-CO, binary mixtures: the
relationship between the percentage difference in the calculated and experi-
mental compressibilities and the L,; values is nearly linear; the slope of this

* For similar molecules, identified as i = j, k,, =0, yielding L,; =1.0; for dissimilar mole-
cules, i # j, so that k,,#0 and L, #1.
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relationship varies for different systems and for different conditions within a
given system; L,; becomes an important parameter near the critical point
i.e. at low Z values, of a mixture where the original BWR mixing rules work
least well and where small changes in L, values (Fig. 2, C,H,-CO,) may
make large differences in the P-V-T relations; and the estimated errors in
Z for some binary systems seem to cluster around an optimum L;, value
(for C,H,—CO, this occurs near L; = 0.90) while for other systems such as
He-CO, there is no such distinct L value.

Figure 1 indicates that the calculated compressibility factor for the
He-CO, system varies with pressure while Fig. 4 shows a systematic change
in Z values with composition for the N,-CO, binary mixture. These
observations prompt the suggestion that the binary interaction parameter L;;
is functionally dependent on the state parameters, temperature 7, pressure P
and composition x, i.e. instead of the fixed interaction parameter L, ,
interaction parameter function L, (7,P,x) curve-fitted by means of multl-
ple linear regression methods to an equation of the form

L,=e+fx+gP+hT (41)

is introduced. The coefficients e, f, g and h are characteristic constants of
the given binary system and are dimensionless because x, the mole fraction,
is a dimensionless entity while the inputted state parameter P and T values
have been referred to a reference state of unit pressure (atm) and unit
absolute temperature (K). Tables 4 and 5 attest to the overall validity of the
proposed relation (eqn. (41)). The proposed relation (eqn. (41)) is indirectly
strengthened by the earlier work of Gugnoni et al. [39] who showed that the
binary interaction parameter k,, for the 4, mixing term for the C,H¢,-CO,
system, is a strong function of temperature.

EXPERIMENTAL DATA USED AND COMPUTER PROGRAMMING

The summary of experimental data used is given in Table 1. It is assumed
that the data presented were of sufficient reliability so that further evalua-
tion of their accuracy was not made.

Table 2 presents a set of new BWR constants of He to be used in mixture
calculations containing He as a component *. This set of constants does not
possess low temperature (quantum) corrections and hence is to be used for
temperatures above 50 K. This set was obtained by means of the Starling
generalized equations (eqns. (18)—(26), (30)-(37); constants d, D, and E,
were not required) with the Prausnitz and Chueh (22] effective critical
constants for He, T, = 10.47 K; ¥, =0.0375 1 mol .

<

* The presented constants (Table 2) supplement the set of BWR constants for pure He found
in the work of McFee et al. [12].
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The pure gas compressibility factor calculation programs of McFee et al.
[12] were extended to include calculations of mixture compressibility factors.
Experimental data for some difficult-to-fit mixtures involving CO, and the
quantum gases He and H, were used to test the mixing rules (eqns.
(30)-(40)) and the equations of state (eqns. (18)-(29)). The interaction
parameter L,, optimum value for a mixture (Tables 3-6) was found by
varying the L,; parameter until a minimum RMS% error value was found.
The determination of the interaction parameter function L; (T, P,x) value
consisted of the evaluation of the coefficients e, f, g and & of eqn. (41) by
iterating the L,;; valueuntil a preset tolerance limit in calculated com-
pressibility factor value was reached. The calculations were performed by
means of linear regression analysis program which curve-fitted the L;, value
against the corresponding 7, P, x data till the final values of the coefficients
e, f, g and h characterizing the state variables 7, P and x (eqn. (41),
Tables 4 and 5) were obtained. The measure of the closeness with which the
regression plane fitted the experimental data points was established by
means of the multipie correlation coefficient, R [40,41], such that 0 < R< 1.0
(Table 4). The significance of each individual coefficient was tested by the F
ratio (FR) or the F test [40,41)]. Preset, low FR values served as criteria for
omitting variables tested as insignificant from the correlation (eqn. (41),
Table 4).

RESULTS AND DISCUSSION

Table 3 contains a summary of the fixed interaction parameter L,
optimum values calculated by means of several methods. Table 4 presents
the values of coefficients e, f, g and A for the calculation of the interaction
parameter L;, value using eqn. (41). Table 5 compares the RMS% error
values obtained using both methods, the fixed interaction parameter L;,
optimum value approach (Table 3), and the interaction parameter function,
L,;(T,P,x), using eqn. (41) to calculate “localized” L;; values for the given
T, P,x conditions (Table 4). The first five columns of Table 5 show results
obtained when only the BWR equation constant listed is modified by the
optimum value of the interaction parameter L,;. The sixth column shows
results when the constants 4, and C, are simultaneously modified by the
fixed binary interaction parameter L;;. The next three columns compare
results obtained by means of the original BWR mixing rules (L,, = 1.0;
eqns. (4)—(11), the Bishnoi-Robinson mixing rules (L,; # 1.0, egns.
(12)—(15)) and the application of the fixed binary interaction parameter L,;
for the generalized Starling equation (egns. (18)—(40)).

As seen from Table 5, when a fixed binary interaction parameter L, is
used, the RMS% error for almost all systems is significantly lower than with
the original BWR equation mixing rules. The decrease in RMS% error is due
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to an improved curve-fit in predicting the low Z values at the critical and
near the critical state regions. These regions are not adequately described by
the original BWR equation mixing rules. Table 5 indicates that for the fixed
interaction parameter L,;, almost the same accuracy may be obtained using
a variety of mixing rules. Note however that the optimum value of the
interaction parameter L,, may somewhat depend on the mixing rule used.
The results show (Table 5) that for binary mixture compressibility factor
calculations, the BWR equation has a slight superiority over the generalized
Starling equation. Whether the Starling equation might be more accurate
than the BWR equation, due to the extra terms for binary mixture derivative
property calculations, is a subject for further inquiry.

The second part of Table 5 shows that the use of the binary interaction
parameter function L, (T, P, x)=e+ fx+ gP + hT (eqn. (41)) improved
the RMS% error curve-fit for He-N,, He-CO,, N,-CO, and CH,-CO,
mixtures for both the BWR equation (two types of mixing rules) and the
generalized Starling equation. Table 4 indicates that the certainty of this
improved curve-fit, as measured by R (multiple correlation coefficient), is
very good for these systems. The certainty of each individual coefficient e,
f, g and h, as measured by their F ratios (FR) is also quite good. Less
improvement is noted for the Ar-CO,, He-Ar and H,-CH, systems. Only
for the C,H4-CO, and C;Hg—-CO, systems does the parameter L,, seem to
become constant for all the mixing rules listed.

Data sets for calculating L,, values from eqn. (41) must include high
pressure and critical region states if these regions are to be studied by means
of a state equation. Kato et al. [42] imply that in addition to the state
properties, interaction parameters may differ for different thermodynamic
properties. Thus, Nishiumi and Saito [38] present a series of correlations of
the binary interaction parameter with ¥, and V, to be used with their T,
P. mixing rules for vapour-liquid equilibrium calculations.

Table 6 shows that for the same binary mixture different investigators
propose considerably varying fixed interaction parameter L,, values. This
may introduce large curve-fit RMS% error variations. For instance, for the
C,H4-CO, system, for the BWR equation with the Bishnoi-Robinson
mixing rules, use of L,, =0.92 as suggested by Prausnitz and Chueh [22]
may lead to an RMS% error larger than 10% in the critical state region for
the compressibility factor. If L, = 0.96 is used (this work *, Table 6), there
is an overall RMS% error of 2.19.

* To obtain the optimum L,, value for the C,Hs—CO, system (Table 6) the following
calculated results were compared: for L, = 0.97, RMS% error = 3.13; for L, ,=0.96, RMS%
error =219, for L,,=0.95, RMS% error = 2.26; for L,,=0.94, RMS% error = 3.20; for
L,, =050, RMS% error =8.37. From these results, L, ;=0.96 was selected as the fixed
optimum value.
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This study indicated that both the BWR equation and the Starling
generalized equation can predict with sufficient accuracy the gas phase
binary mixture compressibility factor over a wide range of thermodynamic
conditions if mixing rules used include reliable binary interaction parame-
ters L,; (Tables 3-6). If the ease of use of the state equation is considered,
then the Starling generalized equation, or a version of the BWR equation
where only the 4, term for the mixture contains an interaction parameter
L;,, would appear to be suitable for calculating the compressibility factor of
the binary gas mixture (Tables 3-5).
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LIST OF SYMBOLS

Ay, By, Gy, A, B, C, a, v B-W-R equation constants

Ay, By, Cy, Dy, Ey, a, b, ¢, d, a, y Starling equation constants

e, f,g h dimensionless coefficients of eqn. (41)

k,, binary interaction parameter

L, binary interaction parameter defined
as L;;=1—k;;

P pressure

R universal gas constant

T temperature

|4 volume

X composition, mole fraction

zZ compressibility factor

o density

» acentric factor

Subscripts

c critical state

i j components of binary mixture

T reduced state (with respect to the

vapor-liquid critical state)
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