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ABSTRACT 

Using the available experimental gas compressibility data, the predictive accuracy of the 
Benedict-Webb-Rubin and Starling equations of state was tested in P-V-T calculations 
over a wide range of temperature, pressure and composition for the following binary 
mixtures: He-N,, He-Ar, He-CO,, H,-CH,, Ar-CO,, N,--CO,, CH,-CO,, C,H,-CO, 
and C,H,-CO,. New interaction parameters, L,, = L,,( T, P,x), functionally dependent on 
temperature (T), pressure (P) and composition (x) were introduced, The root mean square 
(RMS) percent errors 

RMS% error = 
[ 

i (S error)2/n 1 
l/2 

r=l 

where % error = K Zca~culat~ - Zexpenmenta~ WLpenmenta~ ] x 100, calculated over the T-P-x 
range investigated for all binary mixtures, showed a degree of superiority for the 
Benedict-Webb-Rubin equation over the Starling equation of state. 

INTRODUCTION 

The eight-constant Benedict-Webb-Rubin (BWR) [l-6] equation and its 
modification, the eleven-constant Starling [7-lo] equation of state have 
proved to be highly successful in providing a good description of the 
thermodynamic behaviour of real fluids for both vapour and liquid phases 
[ll-191. Lielmezs and coworkers [12] have shown that for pure gas com- 
pressibility factor calculations the generalized Starling equation gives good 
results for the following compounds: CH,, C,H,, C,H,, CO,, N,, Ar, H, 
and He. They also noted that the BWR equation gives improved results if a 
reliable constant set is available for each compound [12]. 

This study examines the use of these two equations of state and the 
mixture combination rule * in predicting the compressibility factors for 

* A general introduction to various forms of these mixing rules is found in the texts of Reid 
et al. [20,21] and Prausnitz and Chueh [22]. 
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TABLE 1 

Experimental data used a 

System Refe- No. of Pressure Temper- Composi- Compres- Average 
rence data range, ature tion range, sibility compres- 

points P (atm) range, x, 1st factor sibility 

T (K) component range - 

z $vr&, 

He-N, 24 45 13-530 183-273 0.16-0.75 0.60-1.71 1.116 
He-Ar 25 32 80-320 303-773 0.12-1.00 0.99-1.11 1.040 
He-CO, 29 30 180-560 313-353 0.28-0.78 0.74-1.24 1.145 

31 19 l- 70 293 0.06-0.90 0.70-1.02 0.941 
32 39 16-440 340-700 0.12-0.95 0.62-1.06 0.991 
33 53 l-250 303-343 0.15-0.80 0.69-1.08 0.953 

H,-CH, 23 71 13-340 200-283 0.20-0.78 0.73-1.22 0.993 
Ar-CO, 29 29 203-580 313-353 0.29-0.80 0.54-1.19 0.953 

30 20 l- 25 203-303 0.09-0.67 0.88-1.00 0.962 
N,-CO, 29 50 88-580 313-353 0.32-0.77 0.65-1.36 0.978 
CH,-CO, 26 38 13-340 310-444 0.20-0.67 0.80-1.01 0.865 
C,H,-CO, 27 66 6-620 277-511 0.21-0.80 0.31-1.64 0.773 
C,H,-CO, 28 76 13-680 311-478 0.18-0.83 0.32-1.43 0.800 

a Property data for pure compounds taken from McFec et al. [12] and Reid et al. [20,21]. 

several non-hydrocarbon and hydrocarbon-non-hydrocarbon binary mix- 
tures: He-CO,, He-N,, He-Ar, H,-CH,, Ar-C02, N,-CO,, CH,-CO,, 
C,H,-CO, and C,H,-CO,. Experimental data were gathered from a num- 
ber of sources[23-331 for the gas phase compressibilities and for near to the 
critical state condition. The BWR constants for individual pure components 
taken from McFee et al. [12] were supplemented by a set of new values for 
He (see Tables 1 and 2). The applicability of the BWR equation coefficients 
(eqns. (3)-(11)) for binary mixture calculations, was tested in three ways: 

TABLE 2 

Recommended binary mixture Benedict-Webb-Rubin constants a (e.qn. (3)) for He 

A 0.000231886 
AC! 0.0524262 
B 0.00056115 
Bo 0.0150686 
C - 0.000988 
CO - 1.0360223 
a 0.00000472 
Y 0.00092675 

a Pure component critically evaluated BWR constant values for He given by McFee et al. 

P4. 
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using the original BWR mixing rules (eqns. (4)-(11)) which do not contain 
an empirical binary interaction parameter L,,, i.e. Lij is assumed to be 1.0; 
using mixing rules suggested by Bishnoi and Robinson (eqns. (12)-(U)) 
which contain a fixed binary interaction parameter Lij ( Lij = 1 - k,,) for 
coefficients A,, C,, A and C (Tables 3 and 5) and for coefficients B, and B 
(eqns. (16) and (17); Tables 3 and 5); and by introducing in the original 
BWR mixing rules (eqns. (4)-(ll)), in place of the fixed interaction parame- 
ter L,,, a new binary interaction parameter function LIj( T, P,x) such that 
Lij = e +fx + gP + hT (eqn. (41), Tables 4 and 5). 

The results of these tests were evaluated by comparing the compressibility 
factors calculated using the state equations with the experimental com- 
pressibility factor data over the entire data set by means of the root mean 
square (RMS) percent error 

RMS% error = c [i;, (% e$r 

where for each data point “i ” 

Z 
5%~ error = 

[ 

calculated - &minlentd 
Z 1 x 100 

experimental 

The optimum or “best” set of BWR coefficients and/or L,, values was 
that set of coefficients and/or L,, values which yields the lowest RMS% 
error over the same set of experimental data. Table 1 presents the summary 
of experimental data used. It also contains the parameter Z,v*. A low Z,, 
value indicates the presence of critical state data points in the given data set 
which are more difficult to curve-fit. Table 2 presents a new set of BWR 
constants for He to be used for gaseous mixtures ** containing He as a 
component. Table 3 sums up the fixed interaction parameter Lij optimum 
values as calculated by several methods while Table 4 presents the calculated 
values of the dimensionless coefficients e, f, g and h of the interaction 
parameter function, Lij( T, P,x) = e + fx + gP + hT, and shows the measure 
of the degree of fit for this equation. Table 5 compares the RMS% errors 

(eqns. (I) and (2)) in compressibility factor Z values calculated for binary 
mixtures by means of several methods. Table 6 points out the differences in 
fixed interaction parameter Lij values as obtained by several authors. 
Figures l-4 show the fixed interaction parameter Lij dependence on the 
state parameters T, P and x for three binary systems, thus indicating the 
need for a state-dependent interaction parameter function Li, (T, P,x) such 

is defined as Z,, = (l/n)F’ 1 Z where Z is the ith compressibility factor. 
: *z$reliminary calculations, this wkyk, i&cated &at the BWR coefficients for pure He [12] 
did not sufficiently describe the curve-fit of binary mixtures containing He as a component. 
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TABLE 6 

Comparison of interaction parameter L,, values obtained by several authors 

System Method 

Starling eqn. (eqns, (18)-(~)) BWR eqn. (eqns. (3)-(17)) 

This work Starling This work Chueh and 
(Tables 3 and 4) and Han (Tables 3 and 4) Prausnitz 

[L-61 [22f 

CH,-CO, 0.75 0.95 0.80 0.95 
CsH,-CO, 0.96 0.952 0.96 0.92 
C$Hs-CO2 0.95 0.955 0.95 0.89 
N, -CO, 1.17 1.00 1.15 
Hz-CO, a 1.30 0.99 0.90 0.97 

a Calculated including quantum effect correction 1121. 

as eqn. (41), Tables 3-5. In this, as in the previous work [12], the multiprop- 
erty linear regression method (BWR equation of state) proved to be overall 
more accurate than the generalized Starling equation even if the multiprop- 
erty regression approach is computer time consuming and not always in 

8 
7 

6 

N 5 

.c Q 

Pressure x lo-? (atm ) 
Fig. 1. Change of percentage-error in Z as a function of pressure, P, keeping interaction 
parameter L,, fixed for: C,H,-CO, system at x = 0.1777; T = 344.26 K and A, =f(L,,,) 
only, and He-CO* system at x = 0.5144, T = 313.05 K and A, = f( L, j) 
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I. 1 I.. I ( 

.a 9 10 11 1.2 

Lij 

Fig. 2. Change of percentage error in Z as a function of the interaction parameter L,, for 
C,H,-CO, system with A, = f(L,,) at the following conditions: W -a x = 0.1777, 
P = 85.03 atm, T = 310.93 K, Z = 0.3929; l - 0 x = 0.1532, P = 170.07 atm, T = 310.93 
K, Z = 0.467; 4 -A x = 0.1777, P = 40.82 atm, T = 310.93 K, Z = 0.7951; A-A 
x = 0.1777, P = 544.22 atm, T = 344.26 K, Z =1.0177. 

itself successful (Tables 3-6). Varying the interaction parameter Lij or 
introducing the interaction parameter function L,, ( T, P, x) reduced errors 
for several binary mixtures (Tables 3-6). 

10 . 

6 . 

N . 
.5 6 - 

8 4. 
k 
al . 

02- a- 

-6 

-6 

t 

-101’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 

.4 .6 .6 1.0 1.2 1.4 16 

Lij 

Fig. 3. Change in percentage error in Z as a function of interaction parameter L,, for 
He-CO, system with A, = f( L,,) only at fixed temperature T = 313.05 K for the following 
conditions: (1) x = 0.2813, P =184.56 atm, Z = 0.7450; (2) x = 0.5144, P = 184.43 atm, 
Z = 0.9395; (3) x = 0.7741, P = 522.25 atm, Z = 1.2315. 
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5 - 

4 - 

3 . 

NZ- 
.E 

l P;6803stm 

A P .136.05 atm 

2 .4 6 .a 

Mole fraction Nz 

Fig. 4. Change of percentage error in Z as a function of mole fraction x for N,-CO, system 
at fixed temperature T = 310.93 K and L,, = 0.60, and with A, = f(L,,) for two pressures 
P = 68.03 atm and P = 136.05 atm. 

EQUATIONS OF STATE 

Benedict- Webb-Rubin (B WR) equation 

The BWR equation of state [l-6] is 

CO 
B,RT-A,-- 

CP3 

RT2 
p2+(BRT-A)p3+Aap6+- T2 0 + VP”) 

+exp( -w2) (3) 
where B,, A,, Co, B, A, C, (Y and y are eight empirical constants [1,2]. 

The original mixture rules proposed by Benedict et al. [l-6] are 

BO = CxzBOi (4 

A, = [ &(Aoiy2 2 
I 1 

(5) 

cO = [ ~*i(cOt11’2] (6) 

(7) 
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c= [ Fx*(ci)1'3] 

a = [ $x,bY’]’ 
Y = [ ~XAYY2] (11) 

These mixing rules (eqns. (4)-(11)) were shown to be adequate by the 
original investigators [l-6] for many of the hydrocarbon-hydrocarbon sys- 
tems. To improve the mixing rule predictive accuracy for non- 
hydrocarbon-hydrocarbon systems at low temperatures and possibly at 
elevated pressures, researchers [16,17,34-371 have suggested that binary 
interaction parameters be introduced into the cross-interaction terms of the 
BWR original mixing rules. Thus Bishnoi and Robinson [16,17,34,35], utiliz- 
ing the previous work of Stotler and Benedict [36] and Motard and Organick 
[37], proposed the following mixing rules involving the interaction parameter 

AOzj = (AOiACl,)1’2LI, 

colt = (cO~cOj)*'2Lji 

A,j = ( A,Ay2 L,j 

Clj = (clcj)“2L;J 

In this work the effect of the 
original B, term was considered 

B,,j = ( BoiBojy2/Lij 

Bi, = ( B~B$‘~/L~~ 

Starling equation 

(12) 

(13) 

(14 

(15) 
binary interaction parameter L,, on the 
to be (Tables 3 and 5) 

(16) 

07) 

The Starling [7-lo] equation * is an extension of the BWR equation of 
state with temperature corrections for C,, (additional constants D, and E,) 
and A (additional constant d) 

~+%-~ 
T2 T3 T4 

+ar a+$ p6+$(l+ypp2)exp(-yp’) 
i 1 

(18) 

* All the data needed for the evaluation of the Starling equation for pure components are 
taken from McFee et al. [12]. 
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Starling et al. [7-lo] expressed the eleven pure component parameters (eqn. 
(18)) as the following functions of the component acentric factor o,, the 
critical temperature rci and critical density P,, 

Pcl%i = AI + BI”, (19) 

Pci AO, 
-=A,+B,oi 
RT,, 

P&O, 

Rq; 
=A,+B3q (21) 

P iYl = 4 + B&I (22) 
pzib, = A, + Bsw, (23) 

p~zcti=A,+B7~, 

pf,c, =As+Bsw, 
Rc; 

PC, DOi 
- =A9+B,wi 
RT; 

PZid* =A 

RK; lo 
+B o 

10 1 

EOi PZ* 

RK; 
= A,, + Bllq 

(25) 

(26) 

(27) 

(28) 

(2% 

The mixing rules proposed by Starling et al. [7-lo] are similar to the 
BWR rules *, and in effect are a combination of the suggestions of Stotler 
and Benedict [36], the A, term, and of Motard and Organick [37], the Co 
term but with the interaction parameter.L,, in the Do and E, terms also, as 
these terms modify the Co term. 

The mixing rules used in this work are 

BO = CxiBOz w-9 

A, = c c x,x~A~(*A~~L,~ (31) 
’ 3 

co = c ~xlxjc&volJ’L), (32) 
i j 

* Nishiumi and Saito [38] define mixture behaviour for their fifteen-constant extended BWR 
equation by means of mixing rules set solely in terms of state parameters T,, pc and w. 
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[ I 
2 

y = &yi”* 

i 

b = &(by3 3 

[ 1 i 
I. I 

3 

a = Cxiaf’3 

(Y= 
[. I 

;x,cX:/3 3 

c= Lxicy3 3 
[ I i 

i j 

d- xx,df” 3 1 I i 

E, = C CX~X~E,~/~E~~/~L~S~ 

(3% 

(34) 

(35) 

(36) 

(37) 

(38) 

i J 

Interaction parameter function Lij(T,P,x) 

The binary interaction parameter L,,, or as it is often referred to, 
(1 - k,/), is generally assumed to be a constant *, characteristic of each 
binary system and independent of temperature, pressure and composition 
[20-221. The original BWR mixing rules (eqns. (4)-(U)) involving mixtures 
of the same compound family (hydrocarbons-hydrocarbons) neglect the 
small same-compound family interactions and can be “normalized” * by the 
statement that for those particular mixing conditions, Li, = 1.0. For mix- 
tures characterized by interactions between dissimilar compounds, the origi- 
nal BWR mixing rules appear to be insufficient (Table 4) so that an 
interaction parameter, Lij # 1.0, should be introduced. 

Figure 1 illustrates this effect for the two systems C,H,-CO, and 
He-CO,. Curves are presented with the mixing term for A, for these 
systems modified by including the binary interaction parameter Lij # 1.0 
and with the original BWR mixing rules (L, j = 1.0). 

Figures 2 and 3 show how changing the Lij values affects the calculated 
compressibility factor 2 for C2H,-CO, and He-CO, binary mixtures: the 
relationship between the percentage difference in the calculated and experi- 
mental compressibilities and the Lij values is nearly linear; the slope of this 

* For similar molecules, identified as i = j, k,, = 0, yielding Lii =l.O; for dissimilar mole- 
cules, i # j, so that k,, # 0 and L,, f 1. 
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relationship varies for different systems and for different conditions within a 
given system; L,, becomes an important parameter near the critical point 
i.e. at low 2 values, of a mixture where the original BWR mixing rules work 
least well and where small changes in Li values (Fig. 2, C,H,--CO,) may 
make large differences in the P-V-T relations; and the estimated errors in 
Z for some binary systems seem to cluster around an optimum Li, value 
(for C,H,-CO, this occurs near Li, = 0.90) while for other systems such as 
He-CO, there is no such distinct L,, value. 

Figure 1 indicates that the calculated compressibility factor for the 
He-CO, system varies with pressure while Fig. 4 shows a systematic change 
in Z values with composition for the N,-CO, binary mixture. These 
observations prompt the suggestion that the binary interaction parameter Ljj 
is functionally dependent on the state parameters, temperature T, pressure P 
and composition X, i.e. instead of the fixed interaction parameter L,,, an 
interaction parameter function L,,( T, P,x) curve-fitted by means of multi- 
ple linear regression methods to an equation of the form 

L,,=e+fx+gP+hT (41) 

is introduced. The coefficients e, f, g and h are characteristic constants of 
the given binary system and are dimensionless because x, the mole fraction, 
is a dimensionless entity while the inputted state parameter P and T values 
have been referred to a reference state of unit pressure (atm) and unit 
absolute temperature (K). Tables 4 and 5 attest to the overall validity of the 
proposed relation (eqn. (41)). The proposed relation (eqn. (41)) is indirectly 
strengthened by the earlier work of Gugnoni et al. [39] who showed that the 
binary interaction parameter k,, for the A, mixing term for the C,H,-CO, 
system, is a strong function of temperature. 

EXPERIMENTAL DATA USED AND COMPUTER PROGRAMMING 

The summary of experimental data used is given in Table 1. It is assumed 
that the data presented were of sufficient reliability so that further evalua- 
tion of their accuracy was not made. 

Table 2 presents a set of new BWR constants of He to be used in mixture 
calculations containing He as a component *. This set of constants does not 
possess low temperature (quantum) corrections and hence is to be used for 
temperatures above 50 K. This set was obtained by means of the Starling 
generalized equations (eqns. (18)-(26), (30)-(37); constants d, Do and E, 
were not required) with the Prausnitz and Chueh [22] effective critical 
constants for He, T, = 10.47 K; V, = 0.0375 1 mol-i. 

* The presented constants (Table 2) supplement the set of BWR constants for pure He found 
in the work of McFee et al. [12]. 
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The pure gas compressibility factor calculation programs of McFee et al. 
[12] were extended to include calculations of mixture compressibility factors. 
Experimental data for some difficult-to-fit mixtures involving CO, and the 
quantum gases He and H, were used to test the mixing rules (eqns. 
(30)-(40)) and the equations of state (eqns. (18)-(29)). The interaction 
parameter Li, optimum value for a mixture (Tables 3-6) was found by 
varying the Lij parameter until a minimum RMSW error value was found. 
The determination of the interaction parameter function Li, (T, P, x) value 
consisted of the evaluation of the coefficients e, f, g and h of eqn. (41) by 
iterating the Lij valueuntil a preset tolerance limit in calculated com- 
pressibility factor value was reached. The calculations were performed by 
means of linear regression analysis program which curve-fitted the Li, value 
against the corresponding T, P, x data till the final values of the coefficients 
e, f, g and h characterizing the state variables T, P and x (eqn. (41), 
Tables 4 and 5) were obtained. The measure of the closeness with which the 
regression plane fitted the experimental data points was established by 
means of the multiple correlation coefficient, R [40,41], such that 0 G R G 1.0 
(Table 4). The significance of each individual coefficient was tested by the F 
ratio (FR) or the F test [40,41]. Preset, low FR values served as criteria for 
omitting variables tested as insignificant from the correlation (eqn. (41), 
Table 4). 

RESULTS AND DISCUSSION 

Table 3 contains a summary of the fixed interaction parameter Li, 
optimum values calculated by means of several methods. Table 4 presents 
the values of coefficients e, f, g and h for the calculation of the interaction 
parameter Li, value using eqn. (41). Table 5 compares the RMS% error 
values obtained using both methods, the fixed interaction parameter Li, 
optimum value approach (Table 3), and the interaction parameter function, 
Lij(T, P,x), using eqn. (41) to calculate “localized” Lij values for the given 
T, P,x conditions (Table 4). The first five columns of Table 5 show results 
obtained when only the BWR equation constant listed is modified by the 
optimum value of the interaction parameter Lij. The sixth column shows 
results when the constants A, and C, are simultaneously modified by the 
fixed binary interaction parameter Lij. The next three columns compare 
results obtained by means of the original BWR mixing rules (L,, = 1.0; 
eqns. (4)-(ll), the Bishnoi-Robinson mixing rules (Lij # 1.0, eqns. 
(12)-(15)) and the application of the fixed binary interaction parameter Lij 
for the generalized Starling equation (eqns. (18)-(40)). 

As seen from Table 5, when a fixed binary interaction parameter L,, is 
used, the RMS% error for almost all systems is significantly lower than with 
the original BWR equation mixing rules. The decrease in RMS% error is due 
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to an improved curve-fit in predicting the low 2 values at the critical and 
near the critical state regions. These regions are not adequately described by 
the original BWR equation mixing rules. Table 5 indicates that for the fixed 
interaction parameter L,,, almost the same accuracy may be obtained using 
a variety of mixing rules. Note however that the optimum value of the 
interaction parameter L,, may somewhat depend on the mixing rule used. 
The results show (Table 5) that for binary mixture compressibility factor 
calculations, the BWR equation has a slight superiority over the generalized 
Starling equation. Whether the Starling equation might be more accurate 
than the BWR equation, due to the extra terms for binary mixture derivative 
property calculations, is a subject for further inquiry. 

The second part of Table 5 shows that the use of the binary interaction 
parameter function Lzj( T, P, x) = e +fx + gP + hT (eqn. (41)) improved 
the RMS% error curve-fit for He-N,, He-CO,, N,-CO, and CH,-CO2 
mixtures for both the BWR equation (two types of mixing rules) and the 
generalized Starling equation. Table 4 indicates that the certainty of this 
improved curve-fit, as measured by R (multiple correlation coefficient), is 
very good for these systems. The certainty of each individual coefficient e, 
f, g and h, as measured by their F ratios (FR) is also quite good. Less 
improvement is noted for the Ar-CO,, He-Ar and H,-CH, systems. Only 
for the C,H,-CO, and C,Hs--CO2 systems does the parameter L,, seem to 
become constant for all the mixing rules listed. 

Data sets for calculating Li, values from eqn. (41) must include high 
pressure and critical region states if these regions are to be studied by means 
of a state equation. Kato et al. [42] imply that in addition to the state 
properties, interaction parameters may differ for different thermodynamic 
properties. Thus, Nishiumi and Saito [38] present a series of correlations of 
the binary interaction parameter with V,, and V,, to be used with their T,, 
PC mixing rules for vapour-liquid equilibrium calculations. 

Table 6 shows that for the same binary mixture different investigators 
propose considerably varying fixed interaction parameter L,, values. This 
may introduce large curve-fit RMS% error variations. For instance, for the 
C,H,-CO, system, for the BWR equation with the Bishnoi-Robinson 
mixing rules, use of L,, = 0.92 as suggested by Prausnitz and Chueh [22] 
may lead to an RMS% error larger than 10% in the critical state region for 
the compressibility factor. If L,, = 0.96 is used (this work *, Table 6), there 
is an overall RMS% error of 2.19. 

* To obtain the optimum L,, value for the C,H,-CO2 system (Table 6) the following 
calculated results were compared: for L,, = 0.97, RMS% error = 3.13; for L,, = 0.96, RMSS 
error = 2.19, for L,, = 0.95, RMS% error = 2.26; for L,, = 0.94, RMS!% error = 3.20; for 
L,, = 0.90, RMS% error = 8.37. From these results, L,j = 0.96 was selected as the fixed 
optimum value. 
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This study indicated that both the BWR equation and the Starling 
generalized equation can predict with sufficient accuracy the gas phase 
binary mixture compressibility factor over a wide range of thermodynamic 
conditions if mixing rules used include reliable binary interaction parame- 
ters L,j (Tables 3-6). If the ease of use of the state equation is considered, 
then the Starling generalized equation, or a version of the BWR equation 
where only the A, term for the mixture contains an interaction parameter 
Lil, would appear to be suitable for calculating the compressibility factor of 
the binary gas mixture (Tables 3-5). 
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LIST OF SYMBOLS 

A,, 43, ccl, 4 B, c> a, Y B-W-R equation constants 
A,, B,, Co, Do, E,, a, b, c, d, a, y Starling equation constants 
e, f, g, h dimensionless coefficients of eqn. (41) 
k 

L:: 

binary interaction parameter 
binary interaction parameter defined 
as Lij = 1 - kij 

P pressure 
R universal gas constant 
T temperature 
V volume 
x composition, mole fraction 
z compressibility factor 

P density 
0 acentric factor 

Subscripts 

C 

i, j 
r 

critical state 
components of binary mixture 
reduced state (with respect to the 
vapor-liquid critical state) 
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