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The problem of the validity and applicability of mathematical models in 
solid state kinetics is still considered a very controversial topic. Apart from 
the question concerning the physical meaning of the so-called “kinetic 
models”, there are also several mathematical problems and inconsistencies in 
the accepted formalism. In this paper we would like to discuss the most 
frequently used kinetic models with respect to the boundary conditions of a 
rate equation. 

In solid state kinetics the molar concentration of reactants is frequently 
replaced by the so-called degree of conversion (a) which is usually defined 

as 111 

~,=(c,-GMGo-G) 0) 

where C is the concentration of reactants as well as any other physical 
property chosen to represent the system under study. The subscripts in eqn. 
(1) correspond to the value at initial time (t = 0) and final time (t + cc), 
respectively. The time dependence of a is obviously expressed in the form of 
a differential equation 

da/dt = kf( a) (2) 

where k is the Arrhenius rate constant and f(a) is a kinetic model, i.e. an 
algebraic function describing the mechanism of the process. 
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By integration of eqn. (2) under isothermal conditions we obtain 

g(a) = kt 

where 

(3) 

gw = /g + const. 

It thus follows from eqn. (1) that there are two limits for a, i.e. (Y = 0 (for 
t = 0) and (Y = 1 (for t + 00). As the rate constant is always finite, two 
boundary conditions can be derived from eqn. (3) 

lim g(a) = 0 
LX-0 

(5a) 

lim g(a) = 00 
n-t1 

(5b) 

It is noteworthy that these conditions have general validity regardless of the 
type of kinetic model applied. Boundary condition (5a) is well known and it 
is used for the calculation of the constant in eqn. (4). However, boundary 
condition (5b) has not yet been analysed, as far as we know, and thus we 
will focus our attention on the discussion of its validity for the most 
frequently used kinetic models. 

THE JOHNSON-MEHL-AVRAMI MODEL (JMA) 

This model was derived for the description of nucleation growth processes. 
It can be expressed in a generalized form [2] 

f(a) = n(l - rx)[ -ln(l - (11)]l-l” (6) 

and using eqn. (4) and condition (5a), an expression for g(a) is obtained 

g(a) = [ -ln(l -a)]“” (7) 

It is evident that this equation fulfils boundary condition (5b) and thus the 
JMA model is consistent with respect to both the conditions defined. 

THE REACTION ORDER MODEL (RO) 

For the mathematical description of the processes controlled by a surface 
chemical reaction, the RO model is used in the form [2] 

f(a) = (1 - a)” 

From eqn. (4) and condition 

i 

1 - (1 - CX)‘-n 

g(ff) = l-n 
n 

-ln(l-a) n 

(5) it follows that 

(8) 

#l (9) 
= 1 
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TABLE 1 

Functions f(a) and g(a) for DF models 

Model f(a) g(a) 

Dl 
D2 

D3 

D4 

1/2a 
l/[ - ln(1 - a)] 

3(1- a)2’3 

2(1-(l- a)1’3) 

3/2((1- a)-'/3 -1) 

a2 

(l-a)ln(l-a)+a 

[1-(1-a)‘/3]2 

(1-2a/3)-(1-a)2’3 

Boundary condition (5b) is only valid in the case of n >, 1. This relation is 
equivalent to the statement that the f( (u) function for the RO model must be 
either concave upwards or linear (for n = 1) in order to keep condition (5b). 
It should be pointed out, however, that the most frequently used forms of 
the RO model, i.e. R2 and R3 functions, correspond to n = l/2 and 2/3, 
respectively, and thus they do not fulfil the second boundary condition. 

DIFFUSION MODELS (DF) 

In the literature, there are several kinetic models for the description of 
such processes where the mass transport becomes rate controlling [2]. 

Four typical f(a) functions are summarized in Table 1. The correspond- 
ing g(cw) functions were calculated using eqn. (4) and condition (5a). From 
this it is evident that condition (5b) is no longer valid for any of these DF 
models. 

THE SESTAK-BERGCXEN MODEL (SB) 

In empirical kinetics, the SB model is very popular in the form of a 
relatively simple equation [2-41 

f(a) = C(l - a)” 00) 

Unfortunately, the function g(a) cannot generally be written as an analyti- 
cal expression because the integral defined by eqn. (4) can only be expressed 
explicitly in the case of integers m and n. Nevertheless, it can be shown * 
that condition (5a) is valid for 171 -C 1 and similarly that the condition (5b) is 
fulfilled for n 2 1. As the shape of the f( CX) function can be determined 

* The function l/f(a) for the SB model behaves as awm in the neighbourhood of 0 and as 
(1- a)-” in the neighbourhood of 1. Therefore both the boundary conditions can be 
analysed for these special cases. 
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experimentally [5], it is useful to find the relationship between the above 
conditions and the existence of maxima (ar,) and inflex points ( ai) of the 
SB function, defined by the following equations 

m 
%I =-m,n>O m+n 

a ll,i2 = 
mf[mn/(m+n-I)]$ m+n,l 

m+n 

(11) 

(12) 
By comparing eqns. (11) and (12), we see that there are in general two inflex 
points, i.e. ai, < (Y, < ai2. The conditions for their existence within the 
acceptable limits of (Y can be formulated 

m 2 1 ++ ail E (0, (YJ 03a) 

n 2 1 f) (Y,2 E (am, I) (13b) 

According to these relationships it can immediately be seen that boundary 
condition (5a) is fulfilled if an inflex point ail does not exist in the interval 
(Y E (0, a,,,). Similarly it follows that condition (5b) is only valid if an inflex 
point ai2, defined by (13b), exists. 

A particular case of the SB model is the Prout-Tompkins (PT) function 
[2] defined by 

f(CY) = cw(l - CX) (14) 

From eqn. (4) it follows that 

g( CX) = ln* + const. 

It is clear that function g(a) defined by eqn. (15) does not fulfil boundary 
condition (5a). Nevertheless, condition (5b) is still valid. 
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